Advertisement

Uro-News

, Volume 23, Issue 4, pp 32–36 | Cite as

Genauere Diagnostik bei geringerer Strahlenbelastung

Neuerungen und Perspektiven in der Bildgebung bei Harnsteinen

  • Tim NestlerEmail author
  • Christopher Netsch
Fortbildung
  • 40 Downloads

Für eine exakte Erstdiagnose und die bestmögliche individualisierte Behandlung der Urolithiasis ist eine akkurate Bildgebung zwingend erforderlich. Die Computertomografie hat sich in den letzten Jahren rasant weiterentwickelt: Verbesserte Protokolle zur Reduktion der Strahlendosis und ganz neue Technologien haben großes Potenzial, die Bildgebung der Urolithiasis nachhaltig zu verändern.

Literatur

  1. 1.
    Türk C et al. EAU Guidelines on Urolithiasis Anhem, The Netherlands: EAU Guidelines Office; 2018; http://uroweb.org/guideline/urolithiasis
  2. 2.
    Elkoushy MA et al. Lifetime Radiation Exposure in Patients with Recurrent Nephrolithiasis. Curr Urol Rep. 2017; 18: 85CrossRefGoogle Scholar
  3. 3.
    Smith-Bindman R et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009; 169: 2078–86CrossRefGoogle Scholar
  4. 4.
    Rob S et al. Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: is there a difference? Results from a systematic review of the literature. Clin Radiol. 2017; 72: 11–5CrossRefGoogle Scholar
  5. 5.
    Zhang GM et al. High-pitch low-dose abdominopelvic CT with tin-filtration technique for detecting urinary stones. Abdom Radiol (NY). 2017; 42: 2127–34CrossRefGoogle Scholar
  6. 6.
    Tenant S et al. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis.} Eur Radiol. 2017; 27: 4163–72CrossRefGoogle Scholar
  7. 7.
    den Harder AM et al. Radiation dose reduction for CT assessment of urolithiasis using iterative reconstruction: A prospective intra-individual study. Eur Radiol. 2018; 28: 143–50CrossRefGoogle Scholar
  8. 8.
    Assimos D et al. Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART I. J Urol. 2016; 196: 1153–60CrossRefGoogle Scholar
  9. 9.
    Jung H et al. Urolithiasis: evaluation, dietary factors, and medical management: an update of the 2014 SIU-ICUD international consultation on stone disease. World J Urol. 2017; 35: 1331–40CrossRefGoogle Scholar
  10. 10.
    Weisenthal K et al. Evaluation of Kidney Stones with Reduced-Radiation Dose CT: Progress from 2011-2012 to 2015–2016 — Not There Yet. Radiology. 2018; 286: 581–9CrossRefGoogle Scholar
  11. 11.
    Cohen A et al. Hounsfield Units for nephrolithiasis: predictive power for the clinical urologist. Can J Urol. 2017; 24: 8832–7PubMedGoogle Scholar
  12. 12.
    Zheng X et al. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis. Eur J Radiol. 2016; 85: 1843–8CrossRefGoogle Scholar
  13. 13.
    Ananthakrishnan L et al. Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo. Abdom Radiol (NY). 2018; 43: 3075–81CrossRefGoogle Scholar
  14. 14.
    Grosse Hokamp N et al. Low-Dose Characterization of Kidney Stones Using Spectral Detector Computed Tomography: An Ex Vivo Study. Invest Radiol. 2018; 53: 457–62CrossRefGoogle Scholar
  15. 15.
    Nestler T et al. Diagnostic accuracy of third-generation dual-source dual-energy CT: a prospective trial and protocol for clinical implementation. World J Urol. 2018. https://doi.org/10.1007/s00345-018-2430-4Google Scholar
  16. 16.
    Purysko AS et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014; https://doi.org/10.1016/j.crad.2014.08.021Google Scholar
  17. 17.
    Henzler T et al. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol. 2012; 199(5 Suppl): 16–25CrossRefGoogle Scholar
  18. 18.
    Wilhelm K et al. Validating automated kidney stone volumetry in computed tomography and mathematical correlation with estimated stone volume based on diameter. J Endourol. 2018; 32: 659–64CrossRefGoogle Scholar
  19. 19.
    Jain R et al. How Accurate Are We in Estimating True Stone Volume? A Comparison of Water Displacement, Ellipsoid Formula, and a CT-Based Software Tool. J Endourol. 2018; 32: 572–6CrossRefGoogle Scholar
  20. 20.
    Kadihasanoglu M et al. Ureteral Stone Diameter on Computerized Tomography Coronal Reconstructions Is Clinically Important and Under-reported. Urology. 2017; 102: 54–60CrossRefGoogle Scholar
  21. 21.
    Liden M. A new method for predicting uric acid composition in urinary stones using routine single-energy CT. Urolithiasis. 2018; 46: 325–32CrossRefGoogle Scholar
  22. 22.
    Cui HW et al. CT Texture Analysis of Ex Vivo Renal Stones Predicts Ease of Fragmentation with Shockwave Lithotripsy. J Endourol. 2017; 31: 694–700CrossRefGoogle Scholar
  23. 23.
    Mannil M et al. Prediction of successful shock wave lithotripsy with CT: a phantom study using texture analysis. Abdom Radiol (NY). 2018; 43: 1432–8CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für UrologieUniversitätsklinik KölnKölnDeutschland
  2. 2.

Personalised recommendations