Advertisement

Uro-News

, Volume 23, Issue 4, pp 22–28 | Cite as

Virtual-Reality-, Benchtop- und Tier-Benchtop-Simulatoren

Trainingsmodelle in der endoskopischen Urolithiasistherapie

  • Jan-Thorsten KleinEmail author
  • Gamal Anton Wakileh
Fortbildung
  • 5 Downloads

Die häufigsten Eingriffe in der endourologischen Steintherapie sind die Ureterorenoskopie und die perkutane Nephrolitholapaxie. Um den heutigen Bedingungen der chirurgischen endourologischen Ausbildung gerecht zu werden und einen hohen Mindeststandard zu gewährleisten, wurden für beide Verfahren Trainingssimulatoren und standardisierte Trainingscurricula entwickelt.

Literatur

  1. 1.
    Aydin A et al. Simulation-based training and assessment in urological surgery. Nat Rev Urol. 2016; 13: 503–19CrossRefGoogle Scholar
  2. 2.
    Matsumoto ED et al. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills. Int J Urol. 2006; 13: 896–901CrossRefGoogle Scholar
  3. 3.
    Blankstein U et al. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. Can Urol Assoc J. 2015; 9: 331–5CrossRefGoogle Scholar
  4. 4.
    Brunckhorst O et al. Simulation-based ureteroscopy skills training curriculum with integration of technical and non-technical skills: a randomised controlled trial. Surg Endosc. 2015; 29: 2728–35CrossRefGoogle Scholar
  5. 5.
    Noureldin YA et al. Simulation for Percutaneous Renal Access: Where Are We? J Endourol. 2017; 31(S1):10–9CrossRefGoogle Scholar
  6. 6.
    Adams F et al. Soft 3D-Printed Phantom of the Human Kidney with Collecting System. Ann Biomed Eng. 2017; 45: 963–72CrossRefGoogle Scholar
  7. 7.
    Brunckhorst O et al. Simulation-based ureteroscopy training: a systematic review. J Surg Educ. 2015; 72: 135–43CrossRefGoogle Scholar
  8. 8.
    Strohmaier WL et al. Porcine urinary tract as a training model for ureteroscopy. Urol Int. 2001; 66: 30–2CrossRefGoogle Scholar
  9. 9.
    Ahmed K et al. A novel cadaveric simulation program in urology. J Surg Educ. 2015; 72: 556–65CrossRefGoogle Scholar
  10. 10.
    Mishra S et al. Validation of virtual reality simulation for percutaneous renal access training. J Endourol. 2010; 24: 635-40Google Scholar
  11. 11.
    Veneziano D et al. The SimPORTAL fluoro-less C-arm trainer: an innovative device for percutaneous kidney access. J Endourol. 2015; 29: 240–5CrossRefGoogle Scholar
  12. 12.
    Karagozlu Akgul A et al. A Simple, Non - Biological Model for Percutaneous Renal Access Training. Urol J. 2018; 15: 1–5Google Scholar
  13. 13.
    Tawfik AM et al. Validity of a sponge trainer as a simple training model for percutaneous renal access. Arab J Urol. 2017; 15: 204–10CrossRefGoogle Scholar
  14. 14.
    Zhang Y et al. Validation of a novel non-biological bench model for the training of percutaneous renal access. Int Braz J Urol. 2014; 40: 87–92CrossRefGoogle Scholar
  15. 15.
    Atalay HA et al. Impact of personalized three-dimensional -3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol. 2017; 43: 470–5CrossRefGoogle Scholar
  16. 16.
    Turney BW. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access. J Endourol. 2014; 28: 360–3CrossRefGoogle Scholar
  17. 17.
    Klein JT et al. Validation of a Novel Cost Effective Easy to Produce and Durable In Vitro Model for Kidney-Puncture and Percutaneous Nephrolitholapaxy-Simulation. J Endourol. 2018; 32: 871–6CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Urologie und Kinderurologie, Universitätsklinikum UlmUlmDeutschland
  2. 2.

Personalised recommendations