Advertisement

Induced membrane maintains its osteogenic properties even when the second stage of Masquelet’s technique is performed later

  • Florelle GindrauxEmail author
  • François Loisel
  • Michael Bourgeois
  • Karim Oudina
  • Martine Melin
  • Benoit de Billy
  • Pauline Sergent
  • Gregoire Leclerc
  • Hervé Petite
  • Frederic Auber
  • Laurent Obert
  • Isabelle Pluvy
Original Article
  • 64 Downloads

Abstract

Purpose

Previous clinical studies have shown the effectiveness of bone repair using two-stage surgery called the induced membrane (IM) technique. The optimal wait before the second surgery is said to be 1 month. We have been successfully performing the IM technique while waiting an average of 6 months to carry out the second stage. We hypothesised that the IM maintains its beneficial capabilities, even at a later second stage, and that there is no relation between the speed of bone union and the wait between the first and second stage. We sought to explore the biological properties of ‘older’ IMs sampled to substantiate our clinical observations.

Methods

Thirty-four patients with a critical size defect were treated with the IM technique. In seven of these patients, pieces of the IM were collected 4.2–14.7 months after the first surgery. IM-derived cell phenotype and osteogenic potential were investigated using in vitro studies (n = 4) while IM nature and function were investigated by histology and immunohistochemistry (n = 3).

Results

The median wait before the second surgery was 5.8 months [range 1.2–14.7] and bone healing occurred at 7.6 months [range 2.5–49.9] for 26 patients. IMs aged 4.2–14.7 months contained mesenchymal stromal cells with in vitro osteogenic potential and corresponded to a multipotent tissue with osteogenic and chondrogenic capabilities contributing to osteogenesis over time.

Conclusion

This preliminary study suggests the IM retains its powerful osteogenic properties over time and that waiting longer between the two surgeries does not delay bone union.

Keywords

Bone union Induced membrane Experimental studies Multipotent tissue 

Notes

Acknowledgements

The authors thank Fiona Ecarnot (EA3920, University Hospital Besancon, France) and Joanne Archambault, PhD for editorial assistance.

Compliance with ethical standards

Conflict of interest

The authors confirm that there are no conflicts of interest.

References

  1. 1.
    Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.PubMedGoogle Scholar
  2. 2.
    Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42(6):591–8.CrossRefGoogle Scholar
  3. 3.
    Henrich D, Seebach C, Nau C, Basan S, Relja B, Wilhelm K, et al. Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. J Tissue Eng Regenerative Med. 2013;10(10):E382–96.  https://doi.org/10.1002/term.1826.CrossRefGoogle Scholar
  4. 4.
    Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskela HV. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am Volume. 2013;95(7):597–604.  https://doi.org/10.2106/JBJS.L.00310.CrossRefGoogle Scholar
  5. 5.
    Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone. 2013;57(2):484–92.  https://doi.org/10.1016/j.bone.2013.08.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Liu H, Hu G, Shang P, Shen Y, Nie P, Peng L, et al. Histological characteristics of induced membranes in subcutaneous, intramuscular sites and bone defect. Orthop Traumatol Surg Res. 2013;99(8):959–64.  https://doi.org/10.1016/j.otsr.2013.08.009.CrossRefPubMedGoogle Scholar
  7. 7.
    Gouron R, Petit L, Boudot C, Six I, Brazier M, Kamel S, et al. Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J Tissue Eng Regenerative Med. 2014;11(2):382–9.  https://doi.org/10.1002/term.1921.CrossRefGoogle Scholar
  8. 8.
    Taylor BC, Hancock J, Zitzke R, Castaneda J. Treatment of bone loss with the induced membrane technique: techniques and outcomes. J Orthop Trauma. 2015;29(12):554–7.  https://doi.org/10.1097/BOT.0000000000000338.CrossRefPubMedGoogle Scholar
  9. 9.
    Flamans B, Pauchot J, Petite H, Blanchet N, Rochet S, Garbuio P, et al. Use of the induced membrane technique for the treatment of bone defects in the hand or wrist, in emergency. Chir Main. 2010;29(5):307–14.CrossRefGoogle Scholar
  10. 10.
    Masquelet AC, Obert L. Induced membrane technique for bone defects in the hand and wrist. Chir Main. 2010;29(Suppl 1):S221–4.CrossRefGoogle Scholar
  11. 11.
    Zappaterra T, Ghislandi X, Adam A, Huard S, Gindraux F, Gallinet D, et al. Induced membrane technique for the reconstruction of bone defects in upper limb. A prospective single center study of nine cases. Chir Main. 2011;30(4):255–63.CrossRefGoogle Scholar
  12. 12.
    Villemagne T, Bonnard C, Accadbled F, L’Kaissi M, de Billy B, Sales de Gauzy J. Intercalary segmental reconstruction of long bones after malignant bone tumor resection using primary methyl methacrylate cement spacer interposition and secondary bone grafting: the induced membrane technique. J Pediatr Orthop. 2011;31(5):570–6.  https://doi.org/10.1097/bpo.0b013e31821ffa8201241398-201107000-00017.CrossRefPubMedGoogle Scholar
  13. 13.
    Zwetyenga N, Fricain JC, De Mones E, Gindraux F. Induced membrane technique in oral and maxillofacial reconstruction. Rev Stomatol Chir Maxillofac. 2012;113(4):231–8.  https://doi.org/10.1016/j.stomax.2012.05.008s0035-1768(12)00117-9.CrossRefPubMedGoogle Scholar
  14. 14.
    Moris V, Loisel F, Cheval D, See LA, Tchurukdichian A, Pluvy I, et al. Functional and radiographic evaluation of the treatment of traumatic bone loss of the hand using the Masquelet technique. Hand Surg Rehabil. 2016;35(2):114–21.  https://doi.org/10.1016/j.hansur.2015.11.002.CrossRefPubMedGoogle Scholar
  15. 15.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefGoogle Scholar
  16. 16.
    Obert L, Nallet A, Melin M, Zwetyenga N, Gindraux F (2012) Histological, immunological and in vitro analysis of human induced membrane. In: Medical S (ed) Technique de Masquelet p. 81–92.Google Scholar
  17. 17.
    Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells Mater. 2012;23:13–27.CrossRefGoogle Scholar
  18. 18.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefGoogle Scholar
  19. 19.
    Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood. 2008;111(5):2631–5.  https://doi.org/10.1182/blood-2007-07-099622.CrossRefPubMedGoogle Scholar
  20. 20.
    D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14(7):1115–22.CrossRefGoogle Scholar
  21. 21.
    Shah SR, Smith BT, Tatara AM, Molina ER, Lee EJ, Piepergerdes TC, et al. Effects of local antibiotic delivery from porous space maintainers on infection clearance and induction of an osteogenic membrane in an infected bone defect. Tissue Eng Part A. 2016.  https://doi.org/10.1089/ten.tea.2016.0389.CrossRefGoogle Scholar
  22. 22.
    Toth Z, Roi M, Evans E, Watson JT, Nicolaou D, McBride-Gagyi S. Masquelet technique: effects of spacer material and micro-topography on factor expression and bone regeneration. Ann Biomed Eng. 2018.  https://doi.org/10.1007/s10439-018-02137-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Weiss RE, Reddi AH. Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow. J Cell Biol. 1981;88(3):630–6.CrossRefGoogle Scholar
  24. 24.
    Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of Long Bone Infections Using the Induced Membrane Technique: tips and Tricks. J Orthop Trauma. 2016;30(6):e188–93.  https://doi.org/10.1097/BOT.0000000000000500.CrossRefPubMedGoogle Scholar
  25. 25.
    Olesen UK, Eckardt H, Bosemark P, Paulsen AW, Dahl B, Hede A. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases. Injury. 2015;46(Suppl 8):S44–7.  https://doi.org/10.1016/s0020-1383(15)30054-1.CrossRefPubMedGoogle Scholar
  26. 26.
    Gupta G, Ahmad S, Mohd Z, Khan AH, Sherwani MK, Khan AQ. Management of traumatic tibial diaphyseal bone defect by “induced-membrane technique”. Indian J Orthop. 2016;50(3):290–6.  https://doi.org/10.4103/0019-5413.181780.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Azi ML, Teixeira AA, Cotias RB, Joeris A, Kfuri M Jr. Membrane induced osteogenesis in the management of posttraumatic bone defects. J Orthop Trauma. 2016;30(10):545–50.  https://doi.org/10.1097/BOT.0000000000000614.CrossRefPubMedGoogle Scholar
  28. 28.
    Morelli I, Drago L, George DA, Gallazzi E, Scarponi S, Romano CL. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury. 2016;47(Suppl 6):S68–76.  https://doi.org/10.1016/S0020-1383(16)30842-7.CrossRefPubMedGoogle Scholar
  29. 29.
    McEwan JK, Tribe HC, Jacobs N, Hancock N, Qureshi AA, Dunlop DG, et al. Regenerative medicine in lower limb reconstruction. Regen Med. 2018;13(4):477–90.  https://doi.org/10.2217/rme-2018-0011.CrossRefPubMedGoogle Scholar
  30. 30.
    Wong TM, Lau TW, Li X, Fang C, Yeung K, Leung F. Masquelet technique for treatment of posttraumatic bone defects. Scientific World J. 2014;2014:710302.  https://doi.org/10.1155/2014/710302.CrossRefGoogle Scholar
  31. 31.
    Gouron R. Surgical technique and indications of the induced membrane procedure in children. Orthop Traumatol Surg Res. 2016;102(1 Suppl):S133–9.  https://doi.org/10.1016/j.otsr.2015.06.027.CrossRefPubMedGoogle Scholar
  32. 32.
    Mauffrey C, Giannoudis PV, Conway JD, Hsu JR, Masquelet AC. Masquelet technique for the treatment of segmental bone loss have we made any progress? Injury. 2016;47(10):2051–2.  https://doi.org/10.1016/j.injury.2016.09.018.CrossRefPubMedGoogle Scholar
  33. 33.
    Gruber HE, Ode G, Hoelscher G, Ingram J, Bethea S, Bosse MJ. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res. 2016;5(4):106–15.  https://doi.org/10.1302/2046-3758.54.2000483.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Assal M, Stern R. The Masquelet procedure gone awry. Orthopedics. 2014;37(11):e1045–8.  https://doi.org/10.3928/01477447-20141023-93.CrossRefPubMedGoogle Scholar
  35. 35.
    Masquelet AC. Induced membrane technique: pearls and pitfalls. J Orthop Trauma. 2017;31(Suppl 5):S36–8.  https://doi.org/10.1097/BOT.0000000000000979.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  • Florelle Gindraux
    • 1
    • 2
    Email author
  • François Loisel
    • 1
    • 2
  • Michael Bourgeois
    • 1
  • Karim Oudina
    • 3
  • Martine Melin
    • 4
  • Benoit de Billy
    • 2
    • 5
  • Pauline Sergent
    • 1
  • Gregoire Leclerc
    • 1
  • Hervé Petite
    • 3
  • Frederic Auber
    • 2
    • 5
  • Laurent Obert
    • 1
    • 2
  • Isabelle Pluvy
    • 1
    • 2
  1. 1.Orthopaedic and Traumatology Surgery DepartmentUniversity Hospital of BesanconBesanconFrance
  2. 2.Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234University of Franche-ComtéBesanconFrance
  3. 3.Laboratory of Bioengineering and Biomechanics for Bone Articulation (B2OA-UMR CNRS 7052)University Paris DiderotParisFrance
  4. 4.NovotecBronFrance
  5. 5.Paediatric Surgery DepartmentUniversity Hospital of BesanconBesanconFrance

Personalised recommendations