Pedicle screw augmentation in osteoporotic spine: indications, limitations and technical aspects

  • S. HoppeEmail author
  • M. J. B. Keel
Original Article



The need for spinal instrumented fusion in osteoporotic patients is rising. In this review, we try to give an overview of the current spectrum of pedicle screw augmentation techniques, safety aspects and indications.


Review of literature and discussion of indications, limitations and technical aspects.


Various studies have shown higher failure rates in osteoporotic patients, most probably due to reduced bone quality and a poor bone-screw interface. Augmentation of pedicle screws with bone cement, such as polymethylmethacrylate or calcium based cements, is one valid option to enhance fixation if required.


Crucial factors for success in the use of augmented screws are careful patient selection, a proper technique and choice of the ideal cement augmentation option.


Osteoporosis Spine Pedicle screw Surgery Cement augmentation Vertebroplasty 


Compliance with ethical standards

Conflict of interest

Sven Hoppe and Marius J.B. Keel declare that they have no conflict of interest .


  1. 1.
    Keen RW. Burden of osteoporosis and fractures. Curr Osteoporos Rep. 2003;1–2:66–70.CrossRefGoogle Scholar
  2. 2.
    Bernhardt M, Swartz DE, Clothiaux PL, Crowell RR, White Iii AA. Posterolateral lumbar and lumbosacral fusion with and without pedicle screw internal fixation. Clin Orthop Relat Res. 1992;284:109–15.Google Scholar
  3. 3.
    Goldhahn J, Suhm N, Goldhahn S, Blauth M, Hanson B. Influence of osteoporosis on fracture fixation—a systematic literature review. Osteoporos Int. 2008;19–6:761–72.CrossRefGoogle Scholar
  4. 4.
    Halvorson TL, Kelley LA, Thomas KA, Whitecloud Iii TS, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine. 1994;19–21:2415–20.CrossRefGoogle Scholar
  5. 5.
    Yamagata M, Kitahara H, Minami S, Takahashi K, Isobe K, Moriya H, Tamaki T. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine (Phila Pa 1976). 1992;17(3 Suppl):S51–4.CrossRefGoogle Scholar
  6. 6.
    Law M, Tencer AF, Anderson PA. Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine. 1993;18–16:2438–43.CrossRefGoogle Scholar
  7. 7.
    Chao KH, Lai YS, Chen WC, Chang CM, McClean CJ, Fan CY, Chang CH, Lin LC, Cheng CK. Biomechanical analysis of different types of pedicle screw augmentation: a cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys. 2013;35–10:1506–12.CrossRefGoogle Scholar
  8. 8.
    Higashino K, Kim JH, Horton WC, Hutton WC. A biomechanical study of two different pedicle screw methods for fixation in osteoporotic and nonosteoporotic vertebrae. J Surg Orthop Adv. 2012;21–4:198–203.CrossRefGoogle Scholar
  9. 9.
    Hamasaki T, Tanaka N, Kim J, Okada M, Ochi M, Hutton WC. Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine. J Spinal Disord Technol. 2010;23–2:127–32.CrossRefGoogle Scholar
  10. 10.
    Tsai KJ, Murakami H, Horton WC, Fei Q, Hutton WC. Pedicle screw fixation strength: a biomechanical comparison between 4.5- and 5.5-mm diameter screws in osteoporotic upper thoracic vertebrae. J Surg Orthop Adv. 2009;18–1:23–7.Google Scholar
  11. 11.
    Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M, Redl H. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J. 2008;17–11:1462–9.CrossRefGoogle Scholar
  12. 12.
    Liu D, Wu ZX, Pan XM, Fu SC, Gao MX, Shi L, Lei W. Biomechanical comparison of different techniques in primary spinal surgery in osteoporotic cadaveric lumbar vertebrae: expansive pedicle screw versus polymethylmethacrylate-augmented pedicle screw. Arch Orthop Trauma Surg. 2011;131–9:1227–32.CrossRefGoogle Scholar
  13. 13.
    Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002;96–3(Suppl):309–12.Google Scholar
  14. 14.
    Yu BS, Li ZM, Zhou ZY, Zeng LW, Wang LB, Zheng ZM, Lu WW. Biomechanical effects of insertion location and bone cement augmentation on the anchoring strength of iliac screw. Clin Biomech (Bristol, Avon). 2011;26–6:556–61.CrossRefGoogle Scholar
  15. 15.
    Yu BS, Zhuang XM, Zheng ZM, Zhang JF, Li ZM, Lu WW. Biomechanical comparison of 4 fixation techniques of sacral pedicle screw in osteoporotic condition. J Spinal Disord Technol. 2010;23–6:404–9.CrossRefGoogle Scholar
  16. 16.
    Hoppe S, Loosli Y, Baumgartner D, Heini P, Benneker L. Influence of screw augmentation in posterior dynamic and rigid stabilization systems in osteoporotic lumbar vertebrae: a biomechanical cadaveric study. Spine (Phila Pa 1976). 2014;39(6):E384–9.CrossRefGoogle Scholar
  17. 17.
    Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. 1986;203:99–112.Google Scholar
  18. 18.
    Frankel BM, D’Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine. 2007;7–1:47–53.CrossRefGoogle Scholar
  19. 19.
    Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine (Phila Pa 1976). 2004;29(11):E212–6.CrossRefGoogle Scholar
  20. 20.
    Kiner DW, Wybo CD, Sterba W, Yeni YN, Bartol SW, Vaidya R. Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine (Phila Pa 1976). 2008;33(24):2618–22.CrossRefGoogle Scholar
  21. 21.
    Kueny RA, Kolb JP, Lehmann W, Puschel K, Morlock MM, Huber G. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J. 2014;23–10:2196–202.CrossRefGoogle Scholar
  22. 22.
    Law M, Tencer AF, Anderson PA. Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine (Phila Pa 1976). 1993;18–16:2438–43.CrossRefGoogle Scholar
  23. 23.
    Folsch C, Goost H, Figiel J, Paletta JR, Schultz W, Lakemeier S. Correlation of pull-out strength of cement-augmented pedicle screws with CT-volumetric measurement of cement. Biomed Technol (Berl). 2012;57–6:473–80.Google Scholar
  24. 24.
    Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32(10):1077–83.CrossRefGoogle Scholar
  25. 25.
    Linhardt O, Luring C, Matussek J, Hamberger C, Herold T, Plitz W, Grifka J. Stability of anterior vertebral body screws after kyphoplasty augmentation. An experimental study to compare anterior vertebral body screw fixation in soft and cured kyphoplasty cement. Int Orthop. 2006;30–5:366–70.CrossRefGoogle Scholar
  26. 26.
    Flahiff CM, Gober GA, Nicholas RW. Pullout strength of fixation screws from polymethylmethacrylate bone cement. Biomaterials. 1995;16–7:533–6.CrossRefGoogle Scholar
  27. 27.
    Cho W, Wu C, Erkan S, Kang MM, Mehbod AA, Transfeldt EE. The effect on the pullout strength by the timing of pedicle screw insertion after calcium phosphate cement injection. J Spinal Disord Technol. 2011;24–2:116–20.CrossRefGoogle Scholar
  28. 28.
    Chen LH, Tai CL, Lee DM, Lai PL, Lee YC, Niu CC, Chen WJ. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord. 2011;12:33.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Choma TJ, Pfeiffer FM, Swope RW, Hirner JP. Pedicle screw design and cement augmentation in osteoporotic vertebrae: effects of fenestrations and cement viscosity on fixation and extraction. Spine (Phila Pa 1976). 2012;37(26):E1628–32.CrossRefGoogle Scholar
  30. 30.
    Chang MC, Kao HC, Ying SH, Liu CL. Polymethylmethacrylate augmentation of cannulated pedicle screws for fixation in osteoporotic spines and comparison of its clinical results and biomechanical characteristics with the needle injection method. J Spinal Disord Technol. 2013;26–6:305–15.CrossRefGoogle Scholar
  31. 31.
    Tan QC, Wu JW, Peng F, Zang Y, Li Y, Zhao X, Lei W, Wu ZX. Augmented PMMA distribution: improvement of mechanical property and reduction of leakage rate of a fenestrated pedicle screw with diameter-tapered perforations. J Neurosurg Spine. 2016;24(6):971–7. doi: 10.3171/2015.10.SPINE141275.CrossRefPubMedGoogle Scholar
  32. 32.
    Kobayashi H, Fujishiro T, Belkoff SM, Kobayashi N, Turner AS, Seim HB 3rd, Zitelli J, Hawkins M, Bauer TW. Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. J Biomed Mater Res A. 2009;88–4:880–8.CrossRefGoogle Scholar
  33. 33.
    Larsson S, Bauer TW. Use of injectable calcium phosphate cement for fracture fixation: a review. Clin Orthop Relat Res. 2002;395:23–32.CrossRefGoogle Scholar
  34. 34.
    Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC, Svehla M, Bruce WJ. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003;406:228–36.CrossRefGoogle Scholar
  35. 35.
    McLachlin SD, Al Saleh K, Gurr KR, Bailey SI, Bailey CS, Dunning CE. Comparative assessment of sacral screw loosening augmented with PMMA versus a calcium triglyceride bone cement. Spine (Phila Pa 1976). 2011;36(11):E699–704.CrossRefGoogle Scholar
  36. 36.
    Gao M, Lei W, Wu Z, Liu D, Shi L. Biomechanical evaluation of fixation strength of conventional and expansive pedicle screws with or without calcium based cement augmentation. Clin Biomech (Bristol, Avon). 2011;26–3:238–44.CrossRefGoogle Scholar
  37. 37.
    Hashemi A, Bednar D, Ziada S. Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J. 2009;9–5:404–10.CrossRefGoogle Scholar
  38. 38.
    Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine (Phila Pa 1976). 1997;22(15):1696–705.CrossRefGoogle Scholar
  39. 39.
    El Saman A, Meier S, Sander A, Kelm A, Marzi I, Laurer H. Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg. 2013;39–5:455–60.CrossRefGoogle Scholar
  40. 40.
    Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N. Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech. 2012;25–2:E28–35.CrossRefGoogle Scholar
  41. 41.
    Weiser L, Dreimann M, Huber G, Sellenschloh K, Puschel K, Morlock MM, Rueger JM, Lehmann W. Cement augmentation versus extended dorsal instrumentation in the treatment of osteoporotic vertebral fractures: a biomechanical comparison. Bone Jt J. 2016;98-B(8):1099–105.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Orthopedic and Trauma Surgery, Inselspital, University HospitalUniversity of BernBernSwitzerland

Personalised recommendations