The role of biofilm on orthopaedic implants: the “Holy Grail” of post-traumatic infection management?

  • C. MauffreyEmail author
  • B. Herbert
  • H. Young
  • M. L. Wilson
  • M. Hake
  • P. F. Stahel
Review Article


The development of post-traumatic infection is potentially a limb threatening condition. The orthopaedic trauma literature lags behind the research performed by our arthroplasty colleagues on the topic of implant-related infections. Surgical site infections in the setting of a recent ORIF are notoriously hard to eradicate due to biofilm formation around the implant. This bacteria-friendly, dynamic, living pluri-organism structure has the ability to morph and adapt to virtually any environment with the aim to maintain the causative organism alive. The challenges are twofold: establishing an accurate diagnosis with speciation/sensitivity and eradicating the infection. Multiple strategies have been researched to improve diagnostic accuracy, to prevent biofilm formation on orthopaedic implants, to mobilize/detach or weaken the biofilm or to target specifically bacteria embedded in the biofilm. The purpose of our paper is to review the patho-physiology of this mysterious pluri-cellular structure and to summarize some of the most pertinent research performed to improve diagnostic and treatment strategies in biofilm-related infections.


Biofilm Biofilm-related infections Osteomyelitis Post-traumatic osteomyelitis 


Compliance with ethical standards

This paper is a review paper and as such did not require ethical approval.

Conflict of interest

Cyril Mauffrey, Mark Hake, Philip Stahel, Heather Young and Michael Wilson declare that they have no conflict of interest to disclose in relation to this paper.


  1. 1.
    Cierny G 3rd. Surgical treatment of osteomyelitis. Plast Reconstr Surg. 2011;127(Suppl 1):190S–204S.CrossRefPubMedGoogle Scholar
  2. 2.
    Hake ME, Oh JK, Kim JW, Ziran B, Smith W, Hak D, Mauffrey C. Difficulties and challenges to diagnose and treat post-traumatic long bone osteomyelitis. Eur J Orthop Surg Traumatol. 2015;25(1):1–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22 (PubMed PMID: 10334980. Epub 1999/05/21. eng).CrossRefPubMedGoogle Scholar
  4. 4.
    Bjarnsholt T, Kirketerp-Moller K, Jensen PO, Madsen KG, Phipps R, Krogfelt K, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2008;16(1):2–10 (PubMed PMID: 18211573).Google Scholar
  5. 5.
    Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA J Am Med Ass. 2006;296(2):202–11 (PubMed PMID: 16835426. Pubmed Central PMCID: 1885379).Google Scholar
  6. 6.
    Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, et al. Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Jt Surg Am. 2008;90(8):1751–8 (PubMed PMID: 18676908. Epub 2008/08/05. eng).CrossRefGoogle Scholar
  7. 7.
    Hall-Stoodley L, Stoodley P, Kathju S, Hoiby N, Moser C, Costerton JW, et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol. 2012;65(2):127–45 (PubMed PMID: 22469292. Epub 2012/04/04. eng).CrossRefPubMedGoogle Scholar
  8. 8.
    de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013;16(5):580–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Palmer MP1, Altman DT, Altman GT, Sewecke JJ, Ehrlich GD, Hu FZ, et al. Can we trust intraoperative culture results in nonunions? J Orthop Trauma. 2014;28(7):384–90.Google Scholar
  10. 10.
    Palmer MP, Altman DT, Altman GT, Sewecke JJ, Ehrlich GD, Hu FZ, et al. Can we trust intraoperative culture results in nonunions? J Orthop Trauma. 2014;28(7):384–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677–701.CrossRefPubMedGoogle Scholar
  12. 12.
    Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.CrossRefPubMedGoogle Scholar
  14. 14.
    Rinaudi LV, Giordano W. An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett. 2010;304(1):1–11.CrossRefPubMedGoogle Scholar
  15. 15.
    Le Magrex-Debar E, Lemoine J, Gelle MP, Jacquelin LF, Choisy C. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbiol. 2000;55(1–3):239–43.CrossRefPubMedGoogle Scholar
  16. 16.
    McNeill K, Hamilton IR. Effect of acid stress on the physiology of biofilm cells of Streptococcus mutans. Microbiology. 2004;150(Pt 3):735–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J Oral Microbiol. 2014;6:26102 (PubMed PMID: 25523872. Pubmed Central PMCID: 4270880).CrossRefPubMedGoogle Scholar
  18. 18.
    Jolivet-Gougeon A, Bonnaure-Mallet M. Biofilms as a mechanism of bacterial resistance. Drug Discov Today Technol. 2014;11:49–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2005;49(6):2467–73 (PubMed PMID: 15917548. Pubmed Central PMCID: 1140491).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364(9431):369–79 (PubMed PMID: 15276398).CrossRefPubMedGoogle Scholar
  21. 21.
    Abdul-Karim FW, McGinnis MG, Kraay M, Emancipator SN, Goldberg V. Frozen section biopsy assessment for the presence of polymorphonuclear leukocytes in patients undergoing revision of arthroplasties. Mod Pathol. 1998;11(5):427–31 (PubMed PMID: 9619594. Epub 1998/06/10. eng).PubMedGoogle Scholar
  22. 22.
    Patzakis MJ, Wilkins J, Kumar J, Holtom P, Greenbaum B, Ressler R. Comparison of the results of bacterial cultures from multiple sites in chronic osteomyelitis of long bones. A prospective study. J Bone Jt Surg Am Vol. 1994;76(5):664–6 (PubMed PMID: 8175813).Google Scholar
  23. 23.
    Smith EB, et al. Performance characteristics of broth-only cultures after revision total joint arthroplasty. CORR. 2014;472(11):3285–90.CrossRefGoogle Scholar
  24. 24.
    Frangiamore SJ, et al. Early versus late culture growth of propionibacterium acnes in revision shoulder arthroplasty. J Bone Jt Surg Am. 2015;97(14):1149–58.CrossRefGoogle Scholar
  25. 25.
    Arciola CR, Montanaro L, Costerton JW. New trends in diagnosis and control strategies for implant infections. Int J Artif Organs. 2011;34(9):727–36 (PubMed PMID: 22094551. Epub 2011/11/19. eng).CrossRefPubMedGoogle Scholar
  26. 26.
    Trampuz ASJM, Osmon DR, Cockerill FRIII, Hanssen AD, Patel R. Advances in the laboratory diagnosis of prosthetic joint infection. Rev Med Microbiol. 2003;14:1–14.CrossRefGoogle Scholar
  27. 27.
    Bjerkan G, Witso E, Bergh K. Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthopaedica. 2009;80(2):245–50 (PubMed PMID: 19404811. Pubmed Central PMCID: 2823171).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yano MH, Klautau GB, da Silva CB, Nigro S, Avanzi O, Mercadante MT, et al. Improved diagnosis of infection associated with osteosynthesis by use of sonication of fracture fixation implants. J Clin Microbiol. 2014;52(12):4176–82 (PubMed PMID: 25232155. Pubmed Central PMCID: 4313283).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Portillo ME, Salvado M, Trampuz A, Siverio A, Alier A, Sorli L, et al. Improved diagnosis of orthopedic implant-associated infections by inoculation of sonication fluid into blood culture bottles. J Clin Microbiol. 2015;53(5):1622–7 (PubMed PMID: 25740775).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kobayashi N, Bauer TW, Sakai H, Togawa D, Lieberman IH, Fujishiro T, et al. The use of newly developed real-time PCR for the rapid identification of bacteria in culture-negative osteomyelitis. Jt Bone Spine. 2006;73(6):745–7 (PubMed PMID: 16650790. Epub 2006/05/03. eng).CrossRefGoogle Scholar
  31. 31.
    Stoodley P, Braxton EE Jr, Nistico L, Hall-Stoodley L, Johnson S, Quigley M, et al. Direct demonstration of Staphylococcus biofilm in an external ventricular drain in a patient with a history of recurrent ventriculoperitoneal shunt failure. Pediatr Neurosurg. 2010;46(2):127–32 (PubMed PMID: 20664301. Pubmed Central PMCID: 2939992).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Levy PY, Fournier PE, Fenollar F, Raoult D. Systematic PCR detection in culture-negative osteoarticular infections. Am J Med. 2013;126(12):1143e25–33 (PubMed PMID: 24135511).Google Scholar
  33. 33.
    Renvoise A, et al. Broad-range PCR: past, present, or future of bacteriology? Med Et Mal Infect. 2013;43(8):322–30.CrossRefGoogle Scholar
  34. 34.
    Connaughton A, Childs A, Dylewski S, Sabesan V. Biofilm disrupting technology for orthoedic implants: whats on the horizon? Front Med. 2014;1(22):1–4.Google Scholar
  35. 35.
    Ntrouka VI, Slot DE, Louropoulou A. The effect of chemotherapeutic agents on contaminated titanium surfaces: a systematic review. Clin Oral Implants Res. 2011;22(7):681–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Ercan B, Kummer KM, Tarquinio KM, Webster TJ. Decreased Staphyloccocus aerueus biofilm growth on anodized nanotubular titanium and the effect of electrical stiumulation. Acta Biomater. 2011;7(7):3003–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Kizhner V, Krespi YP, Hall-Stoodley L, Stoodley P. Laser-generated shockwave for clearing medical device biofilms. Photomed Laser Surg. 2011;29(4):277–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection resistant surfaces. Biomaterials. 2013;34(34):8533–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Hansen EN, Zmistowski B, Parvizi J. Periprosthetic joint infection: what is on the horizon? Int J Artif Organs. 2012;35(10):935–50.PubMedGoogle Scholar
  40. 40.
    Yilmaz C, Colak M, Yilmaz BC, Ersoz G. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Jt Surg Am. 2013;95(2):117–25.CrossRefGoogle Scholar
  41. 41.
    Gad GFM, Aziz AAA, Ibrahem RA. In vitro adhesion of Staphylococcus spp. to certain orthopaedic biomaterials and expression of adhesion genes. J Appl Pharm Sci. 2012;2(6):145–9.Google Scholar
  42. 42.
    Walkowiak-Przybylo M, Klimek L, Okroj W, Jakubowski W, Chwilka M. Adhesion, activation and aggregation of blood platelets and biofilm formation on the surfaces of titanium alloys Ti6Al4V and Ti6Al7Nb. J Biomed Mater Res A. 2012;100(3):768–75.CrossRefPubMedGoogle Scholar
  43. 43.
    Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014;20(10):981–90. doi: 10.1111/1469-0691.12651.Google Scholar
  44. 44.
    Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–61.CrossRefPubMedGoogle Scholar
  45. 45.
    Hake ME, Young H, Hak DJ, Stahel PF, Hammerberg EM, Mauffrey C. Local antibiotic therapy strategies in orthopaedic trauma: practical tips and tricks and review of the literature. Injury. 2015;46(8):1447–56. doi: 10.1016/j.injury.2015.05.008.CrossRefPubMedGoogle Scholar
  46. 46.
    Mauffrey C1, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of long bone infections using the induced membrane technique: tips and tricks. J Orthop Trauma. 2016;30(6):e188–93.Google Scholar
  47. 47.
    Wasko MK, Borens O. Antibiotic cement nail for the treatment of posttraumatic intramedullary infections of the tibia: midterm results in 10 cases. Injury. 2013;44(8):1057–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Mauffrey C, Chaus GW, Butler N, Young H. MR-compatible antibiotic interlocked nail fabrication for the management of long bone infections: first case report of a new technique. Patient Saf Surg. 2014;8(1):14 (PubMed PMID: 24636020. Pubmed Central PMCID: 3995417).CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kanakaris N, Gudipati S, Tosounidis T, Harwood P, Britten S, Giannoudis PV. The treatment of intramedullary osteomyelitis of the femur and tibia using the reamer–irrigator–aspirator system and antibiotic cement rods. Bone Jt J. 2014;96-B(6):783–8 (PubMed PMID: 24891579).Google Scholar
  50. 50.
    Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.CrossRefPubMedGoogle Scholar
  51. 51.
    Widmer, et al. Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin Infect Dis. 1992;14:1251–3.CrossRefPubMedGoogle Scholar
  52. 52.
    Blaser J, et al. In vivo verification of in vitro model of antibiotic treatment of device-related infection. Antimicrob Agents Chemother. 1995;39:1134–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Osmon DR1, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2013;56(1):e1–25.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. Mauffrey
    • 1
    Email author
  • B. Herbert
    • 1
  • H. Young
    • 2
  • M. L. Wilson
    • 3
  • M. Hake
    • 4
  • P. F. Stahel
    • 1
  1. 1.Department of OrthopaedicsDenver Health Medical CenterDenverUSA
  2. 2.Division of Infectious Diseases, Department of MedicineDenver Health Medical CenterDenverUSA
  3. 3.Department of PathologyDenver Health Medical CenterDenverUSA
  4. 4.Department of OrthopaedicsUniversity of MichiganAnn ArborUSA

Personalised recommendations