A New Injectable Brushite Cement: First Results in Distal Radius and Proximal Tibia Fractures

  • Christian Ryf
  • Sabine Goldhahn
  • Marek Radziejowski
  • Michael Blauth
  • Beate Hanson
Original Article



The restoration of metaphyseal defects remains a challenge for the treating surgeon. Although injectable brushite cements may help to refill bone defects stabilized with internal fixation, human data remains unavailable. The main goal of this prospective multicenter study was to observe the performance of this material in a clinical setting.

Patients and Methods:

The study conducted in seven trauma units included closed metaphyseal distal radius and proximal tibia fractures with bone defects, stabilized with internal fixation and subsequent filling with brushite cement. At 6- and 12-month follow-ups, patient satisfaction (visual analog scale [VAS]) was recorded, as well as complications.


Thirty-eight proximal tibia fractures and 37 patients with distal radius fractures were included. Overall patient satisfaction with the treatment was high (mean VAS = 92 and 91 for proximal tibia and distal radius, respectively), despite the loss of reduction being described in 11% of proximal tibia and 24% of distal radius fractures; the majority of them included severe fracture types. Radiological evaluation showed postoperative cement leakage in 20 cases, where the majority occurred at the distal radius (n = 15). In 13 distal radius fractures, the leakage was resorbed by the final examination.


The tested material showed good outcome in the majority of patients and adequate resorption characteristics, even in the case of extravasation. Stable internal fixation, sufficient bone quality, and no contact between the cement and joint are essential requirements for chronOS Inject, which can be considered as an alternative to existing augmentation materials.

Key Words

Bone cement Bone substitutes Radius fractures Tibial fractures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Handoll HH, Madhok R. Conservative interventions for treating distal radial fractures in adults. Cochrane Database Syst Rev 2003;2:CD000314.PubMedGoogle Scholar
  2. 2.
    Smith DW, Henry MH. Volar fixed-angle plating of the distal radius. J Am Acad Orthop Surg 2005;13:28–36.PubMedGoogle Scholar
  3. 3.
    Hertel P. Tibial plateau fractures. Unfallchirurg 1997;100:508–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Tscherne H, Lobenhoffer P, Russe O. Proximal intra-articular tibial fractures. Unfallheilkunde 1984;87:277–89.PubMedGoogle Scholar
  5. 5.
    Cassidy C, Jupiter JB, Cohen M, Delli-Santi M, Fennell C, Leinberry C, Husband J, Ladd A, Seitz WR, Constanz B. Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am 2003;85-A:2127–37.PubMedGoogle Scholar
  6. 6.
    Huber FX, McArthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, Berger I, Meeder PJ. Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg 2006;126:533–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Handoll HHG, Watts AC. Bone grafts and bone substitutes for treating distal radial fractures in adults. Cochrane Database Syst Rev 2008;2:CD006836.PubMedGoogle Scholar
  8. 8.
    De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007;89:649–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996;329:300–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Auleda J, Bianchi A, Tibau R, Rodriguez-Cano O. Hernia through iliac crest defects. A report of four cases. Int Orthop 1995;19:367–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Lohmann H, Grass G, Rangger C, Mathiak G. Economic impact of cancellous bone grafting in trauma surgery. Arch Orthop Trauma Surg 2007;127:345–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Bartucci EJ, Gonzalez MH, Cooperman DR, Freedberg HI, Barmada R, Laros GS. The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 1985;67:1094–107.PubMedGoogle Scholar
  13. 13.
    Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J Orthop Res 1996;14:786–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Moroni A, Hoang-Kim A, Lio V, Giannini S. Current augmentation fixation techniques for the osteoporotic patient. Scand J Surg 2006;95:103–9.PubMedGoogle Scholar
  15. 15.
    Frankenburg EP, Goldstein SA, Bauer TW, Harris SA, Poser RD. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 1998;80:1112–24.PubMedGoogle Scholar
  16. 16.
    Kurashina K, Kurita H, Hirano M, Kotani A, Klein CP, de Groot K. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 1997;18:539–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J 2001;10:Suppl 2:S114–21.PubMedGoogle Scholar
  18. 18.
    Briem D, Linhart W, Lehmann W, Meenen NM, Rueger JM. Longterm outcomes after using porous hydroxyapatite ceramics (Endobon) for surgical management of fractures of the head of the tibia. Unfallchirurg 2002;105:128–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Gisep A, Wieling R, Bohner M, Matter S, Schneider E, Rahn B. Resorption patterns of calcium-phosphate cements in bone. J Biomed Mater Res A 2003;66:532–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Collinge C, Merk B, Lautenschlager EP. Mechanical evaluation of fracture fixation augmented with tricalcium phosphate bone cement in a porous osteoporotic cancellous bone model. J Orthop Trauma 2007;21:124–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br 2005;87:1203–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Yetkinler DN, Goodman SB, Reindel ES, Carter D, Poser RD, Constantz BR. Mechanical evaluation of a carbonated apatite cement in the fixation of unstable intertrochanteric fractures. Acta Orthop Scand 2002;73:157–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004;25:1439–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Oberle A, Theiss F, Bohner M, Müller J, Kästner SB, Frei C, Boecken I, Zlinszky K, Wunderlin S, Auer JA, von Rechenberg B. Investigation about the clinical use of brushite- and hydroxylapatite-cement in sheep. Schweiz Arch Tierheilkd 2005;147:482–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Charrière E, Terrazzoni S, Pittet C, Mordasini PH, Dutoit M, Lemaître J, Zysset PH. Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 2001;22:2937–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Bohner M, Theiss F, Apelt D, Hirsiger W, Houriet R, Rizzoli G, Gnos E, Frei C, Auer JA, von Rechenberg B. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials 2003;24:3463–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 2005;26:4383–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Müller ME, Allgöwer M, Schneider R, Willenegger H eds. Manual of internal fixation: techniques recommended by the AO-ASIF Group. Berlin: Springer, 1991:118, 142.Google Scholar
  29. 29.
    Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007;13:1–10.PubMedGoogle Scholar
  30. 30.
    Engel T, Lill H, Korner J, Verheyden P, Josten C. Tibial plateau fracture - biodegradable bonecement-augmentation. Unfallchirurg 2003;106:97–101.CrossRefPubMedGoogle Scholar
  31. 31.
    Schildhauer TA, Bauer TW, Josten C, Muhr G. Open reduction and augmentation of internal fixation with an injectable skeletal cement for the treatment of complex calcaneal fractures. J Orthop Trauma 2000;14:309–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Keating JF, Hajducka CL, Harper J. Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. A pilot study. J Bone Joint Surg Br 2003;85:68–73.CrossRefPubMedGoogle Scholar
  33. 33.
    Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J 2007;16:601–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Sanchez-Sotelo J, Munuera L, Madero R. Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Joint Surg Br 2000;82:856–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Kopylov P, Jonsson K, Thorngren KG, Aspenberg P. Injectable calcium phosphate in the treatment of distal radial fractures. J Hand Surg [Br] 1996;21:768–71.Google Scholar
  36. 36.
    Stannard JP, Wilson TC, Sheils TM, McGwin G Jr, Volgas DA, Alonso JE. Heterotopic ossification associated with knee dislocation. Arthroscopy 2002;18:835–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Lobenhoffer P, Gerich T, Witte F, Tscherne H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 2002;16:143–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Stevens DG, Beharry R, McKee MD, Waddell JP, Schemitsch EH. The long-term functional outcome of operatively treated tibial plateau fractures. J Orthop Trauma 2001;15:312–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Hegeman JH, Oskam J, Vierhout PAM, ten Duis HJ. External fixation for unstable intra-articular distal radial fractures in women older than 55 years. Acceptable functional end results in the majority of the patients despite significant secondary displacement. Injury 2005;36:339–44.CrossRefPubMedGoogle Scholar
  40. 40.
    Karnezis IA, Panagiotopoulos E, Tyllianakis M, Megas P, Lambiris E. Correlation between radiological parameters and patientrated wrist dysfunction following fractures of the distal radius. Injury 2005;36:1435–39.PubMedGoogle Scholar
  41. 41.
    Goldhahn J, Angst F, Simmen BR. What counts: outcome assessment after distal radius fractures in aged patients. J Orthop Trauma 2008;22:S126–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Christian Ryf
    • 1
  • Sabine Goldhahn
    • 2
    • 5
  • Marek Radziejowski
    • 3
  • Michael Blauth
    • 4
  • Beate Hanson
    • 2
  1. 1.Davos HospitalDavos PlatzSwitzerland
  2. 2.AO Clinical Investigation and DocumentationDübendorfSwitzerland
  3. 3.Springs Parklands Clinic, Department of OrthopedicsWits University JohannesburgJohannesburgSouth Africa
  4. 4.Department for Trauma Surgery and Sports MedicineMedical University of InnsbruckInnsbruckAustria
  5. 5.AO Clinical Investigation and DocumentationDübendorfSwitzerland

Personalised recommendations