European Journal of Trauma and Emergency Surgery

, Volume 34, Issue 6, pp 527–534

Pathophysiology and Pathomorphology of Osteoporosis

  • F. Timo Beil
  • Sebastian Seitz
  • Mathias Priemel
  • Florian Barvencik
  • Christoph von Domarus
  • Johannes M. Rueger
  • Michael Amling
  • Pia Pogoda
Focus on Osteoporosis and Paget’s Disease

Abstract

Osteoporosis is a disease that leads to fragility fractures due to the loss of bone mass and bone microstructure. This review presents an update on the fundamental pathophysiological and pathomorphological mechanisms of bone loss. Pathomorphological characteristics such as perforations and microcallus formations are explained. The physiological relevance of the remodeling process and its control by local paracrine, systemic endocrine, and central neural signaling pathways are discussed. Hormones, such as estrogen, follicle stimulating hormone, and leptin, transcription factors, such as Runx2 and osterix, and the wnt signaling pathway are discussed in terms of their roles in bone cell differentiation and function. On the basis of current knowledge, osteoporosis can be diagnosed and treated and fractures can be prevented. However, it is likely that new and even more effective diagnostic and therapeutic strategies will emerge as our understanding of the remodeling process that controls osteoblast and osteoclast function increases.

Key Words

Microcallus Osteoblast Osteoclast Osteoporosis Remodeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U.S. Census Bureau, Population Division, Washington, USA; http://www.census.gov; Data updated 07-16-2007.
  2. 2.
    Stepnick LS. The frequency of bone disease. In: McGowan JA, Raisz LG, Noonan AS, Elderkin AL (eds). Bone health and osteoporosis. A report of the surgeon general. Office of the Surgeon General, Washington, DC 2004, pp 68–87.Google Scholar
  3. 3.
    Bono CM, Einhorn TA. Orthopaedic complications of osteoporosis. In: Favus MJ, Christakos S (eds). Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th edition American Society for Bone and Mineral Research, Washington D.C. 2003, pp 388–398.Google Scholar
  4. 4.
    Cooper A, Cooper BB. A treatise on dislocations and on fractures of the joints. London: Churchill, 1822.Google Scholar
  5. 5.
    Albright F, Bloomberg E, Smith PH. Postmenopausal osteoporosis. Trans Assoc Am Phys 1940;55:298–305.Google Scholar
  6. 6.
    Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982;70:716–723.PubMedCrossRefGoogle Scholar
  7. 7.
    Delling G, Amling M. Biomechanical stability of the skeleton — it is not only bone mass, but also bone structure that counts. Nephrol Dial Transplant 1995;10:601–606.PubMedGoogle Scholar
  8. 8.
    Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318–3325.PubMedCrossRefGoogle Scholar
  9. 9.
    Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 1969;3:211–237.PubMedCrossRefGoogle Scholar
  10. 10.
    Baron R, Ravesloot JH, Neff L, Chakraborty M, Chatterjee D, Lombri A, Horne W. Cellular and molecular biology of the osteoclast. In: Noda M (eds). Cellular and molecular biology of bone. Academic Press, San Diego 1993, pp 445–495.Google Scholar
  11. 11.
    Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;3:345–357.CrossRefGoogle Scholar
  12. 12.
    Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504–1508.PubMedCrossRefGoogle Scholar
  13. 13.
    Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption — a hypothesis. Calcif Tissue Int 1981;33:349–351.PubMedCrossRefGoogle Scholar
  14. 14.
    Reddi AH. Bone morphogenesis and modeling: soluble signals sculpt osteosomes in the solid state. Cell 1997;89:159–161.PubMedCrossRefGoogle Scholar
  15. 15.
    Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech 1993;26:613–616.PubMedCrossRefGoogle Scholar
  16. 16.
    Hahn M, Vogel M, Amling M, Ritzel H, Delling G. Microcallus formations of the cancellous bone: a quantitative analysis of the human spine. J Bone Miner Res 1995;10:1410–1416.PubMedGoogle Scholar
  17. 17.
    Ebeling PR, Atley LM, Guthrie JR, Burger HG, Dennerstein L, Hopper JL, Wark JD. Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab 1996;81:3366–3371.PubMedCrossRefGoogle Scholar
  18. 18.
    Parfitt AM, Villanueva AR, Foldes J, Rao DS. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 1995;10:466–473.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 2003;424:389.PubMedCrossRefGoogle Scholar
  20. 20.
    Prestwood KM, Kenny AM, Unson C, Kulldorff M. The effect of low dose micronized 17ss-estradiol on bone turnover, sex hormone levels, and side effects in older women: a randomized, double blind, placebo-controlled study. J Clin Endocrinol Metab 2000;85:4462–4469.PubMedCrossRefGoogle Scholar
  21. 21.
    Prestwood KM, Kenny AM, Kleppinger A, Kulldorff M. Ultralowdose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 2003;290:1042–1048.PubMedCrossRefGoogle Scholar
  22. 22.
    Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 2002;30:18–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Windahl SH, Hollberg K, Vidal O, Gustafsson JA, Ohlsson C, Andersson G. Female estrogen receptor beta−/− mice are partially protected against age-related trabecular bone loss. J Bone Miner Res 2001;16:1388–1398.PubMedCrossRefGoogle Scholar
  24. 24.
    Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone A, Sairam MR, Kumar TR, Bo W, Braun J, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M. FSH directly regulates bone mass. Cell 2006;125:247–260.PubMedCrossRefGoogle Scholar
  25. 25.
    Robker RL, Richards JS. Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation. Biol Reprod 1998;59:476–482.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption — a hypothesis. Calcif Tiss Internat 1981;33:349–351.CrossRefGoogle Scholar
  27. 27.
    Prior JC. Perimenopause: the complex endocrinology of the menopausal transition. Endocr Rev 1998;19:397–428.PubMedCrossRefGoogle Scholar
  28. 28.
    Amling M, Grote HJ, Vogel M, Hahn M, Delling G. Threedimensional analysis of the spine in autopsy cases with renal osteodystrophy. Kidney Int 1994;46:733–743.PubMedCrossRefGoogle Scholar
  29. 29.
    Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001;22:477–501.PubMedCrossRefGoogle Scholar
  30. 30.
    Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB. Effect of vitamin D on falls: a meta-analysis. JAMA 2004;291:1999–2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Sambrook PN, Chen JS, March LM, Cameron ID, Cumming RG, Lord SR, Zochling J, Sitoh YY, Lau TC, Schwarz J, Seibel MJ. Serum parathyroid hormone predicts time to fall independent of vitamin D status in a frail elderly population. J Clin Endocrinol Metab 2004;89:1572–1576.PubMedCrossRefGoogle Scholar
  32. 32.
    Lips P. Which circulating level of 25-hydroxyvitamin D is appropriate? J Steroid Biochem Mol Biol 2004;89–90:611–614.PubMedCrossRefGoogle Scholar
  33. 33.
    Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, Anderson FH, Cooper C, Francis RM, Donaldson C, Gillespie WJ, Robinson CM, Torgerson DJ, Wallace WA, RECORD Trial Group. RECORD Trial Group. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (randomized evaluation of calcium or vitamin D, RECORD): a randomized placebo-controlled trial. Lancet 2005;365:1621–1628.PubMedCrossRefGoogle Scholar
  34. 34.
    Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption — a hypothesis. Calcif Tiss Int 1981;33:349–351.CrossRefGoogle Scholar
  35. 35.
    Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20:345–357.PubMedCrossRefGoogle Scholar
  36. 36.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–319.PubMedCrossRefGoogle Scholar
  38. 38.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597–3602.PubMedCrossRefGoogle Scholar
  39. 39.
    Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, Holmes GB, Dunstan CR, DePaoli AM. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 2004;19:1059–1066.PubMedCrossRefGoogle Scholar
  40. 40.
    Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003;111:1221–1230.PubMedGoogle Scholar
  41. 41.
    Weitzmann MN, Cenci S, Rifas L, Haug J, Dipersio J, Pacifici R. Tcell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and —independent mechanisms. J Bone Miner Res 2001;16:328–337.PubMedCrossRefGoogle Scholar
  42. 42.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:747–754.PubMedCrossRefGoogle Scholar
  43. 43.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108:17–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513–1521.PubMedCrossRefGoogle Scholar
  45. 45.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML. Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513–523.PubMedCrossRefGoogle Scholar
  46. 46.
    Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bonemass trait. Am J Hum Genet 2002;70:11–19.PubMedCrossRefGoogle Scholar
  47. 47.
    Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Bénichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003;72:763–771.PubMedCrossRefGoogle Scholar
  48. 48.
    Bollerslev J, Wilson SG, Dick IM, Islam FM, Ueland T, Palmer L, Devine A, Prince RL. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005;36:599–606.PubMedCrossRefGoogle Scholar
  49. 49.
    Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL, Ralston SH, Compston JE, Cooper C, Keen R, Langdahl BL, MacLelland A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass JA, Brown MA. Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 2004;19:1619–1627.PubMedCrossRefGoogle Scholar
  50. 50.
    Sudeck PHM. Über die akute entzündliche Knochenatrophie. Arch Klin Chir 1900;62:147–154.Google Scholar
  51. 51.
    Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005;20:783–789.PubMedCrossRefGoogle Scholar
  52. 52.
    Morley J, Marsh S, Drakoulakis E, Pape HC, Giannoudis PV. Does traumatic brain injury result in accelerated fracture healing? Injury 2005;36:363–368.PubMedCrossRefGoogle Scholar
  53. 53.
    Rigaux P, Benabid N, Darriet D, Delecourt C, Chieux V, Dudermel AF, Sutter B, Anselme K, Hardouin P. Study of serum factors potentially involved in the pathogenesis of heterotopic bone formation after severe brain injury. Joint Bone Spine 2005;72:146–149.PubMedCrossRefGoogle Scholar
  54. 54.
    Trentz OA, Handschin AE, Bestmann L, Hoerstrup SP, Trentz OL, Platz A. Influence of brain injury on early posttraumatic bone metabolism. Crit Care Med 2005;33:399–406.PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartzman RJ. New treatments for reflex sympathetic dystrophy. N Engl J Med 2000;343:654–656.PubMedCrossRefGoogle Scholar
  56. 56.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197–207.PubMedCrossRefGoogle Scholar
  57. 57.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002;111:305–317.PubMedCrossRefGoogle Scholar
  58. 58.
    Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005;434:514–520.PubMedCrossRefGoogle Scholar
  59. 59.
    Pogoda P, Egermann M, Schnell J, Priemel M, Schilling AF, Alini M, Schinke T, Rueger JM, Schneider E, Clarke I, Amling M. Leptin inhibits bone formation not only in rodents, but also in sheep. J Bone Min Res 2006;21:1591–1599.CrossRefGoogle Scholar
  60. 60.
    Karsenty G. The genetic transformation of bone biology. Genes Dev 1999;13:3037–3051.PubMedCrossRefGoogle Scholar
  61. 61.
    Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC. Geelong Osteoporosis Study. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004;19:19–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000;289:1508–1514.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosen CJ. Clinical practice. Postmeno osteoporosis. N Engl J Med 2005;353:595–603.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • F. Timo Beil
    • 2
  • Sebastian Seitz
  • Mathias Priemel
  • Florian Barvencik
  • Christoph von Domarus
  • Johannes M. Rueger
  • Michael Amling
  • Pia Pogoda
    • 1
  1. 1.Department of Trauma, Hand, and Reconstructive Surgery, Center for Biomechanics and Skeletal BiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Trauma, Hand, and Reconstructive SurgeryUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations