Advertisement

A novel approach to SBRT patient quality assurance using EPID-based real-time transit dosimetry

A step to QA with in vivo EPID dosimetry
  • Christos MoustakisEmail author
  • Fatemeh Ebrahimi Tazehmahalleh
  • Khaled Elsayad
  • Francis Fezeu
  • Sergiu Scobioala
Original Article
  • 52 Downloads

Abstract

Purpose

Intra- and inter-fraction organ motion is a major concern in stereotactic body radiation therapy (SBRT). It may cause substantial differences between the planned and delivered dose distribution. Such delivery errors may lead to medical harm and reduce life expectancy for patients. The project presented here investigates and improves a rapid method to detect such errors by performing online dose verification through the analysis of electronic portal imaging device (EPID) images.

Methods

To validate the method, a respiratory phantom with inhomogeneous insert was examined under various scenarios: no-error and error-simulated measurements. Simulation of respiratory motions was practiced for target ranges up to 2 cm. Three types of treatment planning technique – 3DCRT (three-dimensional conformal radiation therapy), IMRT (intensity modulated radiation therapy), and VMAT (volumetric modulated arc therapy – were generated for lung SBRT. A total of 54 plans were generated to assess the influence of techniques on the performance of portal dose images. Subsequently, EPID images of 52 SBRT patients were verified. Both for phantom and patient cases, dose distributions were compared using the gamma index method according to analysis protocols in the target volume.

Results

The comparison of error-introduced EPID-measured images to reference images showed no significant differences with 3%/3 mm gamma evaluation, though target coverage was strongly underestimated. Gamma tolerance of 2%/2 mm reported noticeable detection in EPID sensitivity for simulated errors in 3DCRT and IMRT techniques. The passing rates for 3DCRT, IMRT, and VMAT with 1%/1 mm in open field were 84.86%, 92.91%, and 98.75%, and by considering MLC-CIAO + 1 cm (threshold 5%), were 68.25%, 83.19%, and 95.29%, respectively.

Conclusion

This study demonstrates the feasibility of EPID for detecting the interplay effects. We recommend using thin computed tomography slices and adding sufficient tumor margin in order to limit the dosimetric organ motion in hypofractionated irradiation with preserved plan quality. In the presence of respiratory and gastrointestinal motion, tighter criteria and consequently using local gamma evaluation should be considered, especially for VMAT. This methodology offers a substantial step forward in in vivo dosimetry and the potential to distinguish errors depending on the gamma tolerances. Thus, the approach/prototype provides a fast and easy quality assurance procedure for treatment delivery verification.

Keywords

Electronic portal imaging device Stereotactic body radiation therapy Quality assurance In vivo dosimetry Real time transit dosimetry 

Notes

Compliance with ethical guidelines

Conflict of interest

C. Moustakis, F. Ebrahimi Tazehmahalleh, K. Elsayad, F. Fezeu, and S. Scobioala declare that they have no competing interests.

Ethical standards

For this article, no studies with human participants or animals were performed by any of the authors. All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Martel MK, Ten Hauken RK, Hazuka MB, Kessler ML, Strawderman M, Turrisi AT et al (1999) Estimation of tumor control probability model parameters from 3‑D dose distributions of non-small cell lung cancer patients. Lung Cancer 24(1):31–37PubMedCrossRefGoogle Scholar
  2. 2.
    Robertson JM, Ten Haken RK, Hazuka MB, Turrisi AT, Martel MK, Pu AT et al (1997) Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 37(5):1079–1085PubMedCrossRefGoogle Scholar
  3. 3.
    Sveistrup J, Rosenschold PM, Deasy JO, Oh JH, Pommer T, Petersen PM et al (2014) Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance. Radiat Oncol 9:44PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chung HT, Lee B, Park E, Lu JJ, Xia P (2008) Can all centers plan intensity-modulated radiotherapy (IMRT) effectively? An external audit of dosimetric comparisons between three-dimensional conformal radiotherapy and IMRT for adjuvant chemoradiation for gastric cancer. Int J Radiat Oncol Biol Phys 71(4):1167–1174PubMedCrossRefGoogle Scholar
  5. 5.
    Williams MJ, Bailey M, Forstner D, Metcalfe PE (2007) Multicentre quality assurance of intensity-modulated radiation therapy plans: a precursor to clinical trials. Australas Radiol 51(5):472–479PubMedCrossRefGoogle Scholar
  6. 6.
    Moore KL, Brame RS, Low DA, Mutic S (2012) Quantitative metrics for assessing plan quality. Semin Radiat Oncol 22(1):62–69PubMedCrossRefGoogle Scholar
  7. 7.
    Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ (2012) Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys 39(11):6868–6878PubMedCrossRefGoogle Scholar
  8. 8.
    Hunt MA, Jackson A, Narayana A, Lee N (2006) Geometric factors influencing dosimetric sparing of the parotid glands using IMRT. Int J Radiat Oncol Biol Phys 66((1):296–304PubMedCrossRefGoogle Scholar
  9. 9.
    Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M et al (2009) Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys 36(12):5497PubMedCrossRefGoogle Scholar
  10. 10.
    Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F, Heng KCM, Ernst I, Krieger T et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790PubMedCrossRefGoogle Scholar
  11. 11.
    Mans A, Wendling M, McDermott L, Sonke J‑J, Tielenburg R, Vijlbrief R et al (2010) Catching errors with in vivo EPID dosimetry. Med Phys 37(6):2638–2644PubMedCrossRefGoogle Scholar
  12. 12.
    Huang G, Medlam G, Lee J, Billingsley S, Bissonnette J‑P, Ringash J et al (2005) Error in the delivery of radiation therapy: results of a quality assurance review. Int J Radiat Oncol Biol Phys 61(5):1590–1595PubMedCrossRefGoogle Scholar
  13. 13.
    Patton GA, Gaffney DK, Moeller JH (2003) Facilitation of radiotherapeutic error by computerized record and verify systems. Int J Radiat Oncol Biol Phys 56(1):50–57PubMedCrossRefGoogle Scholar
  14. 14.
    Van Herk M (2004) Errors and margin. Semin Radiat Oncol 14(1):52–64PubMedCrossRefGoogle Scholar
  15. 15.
    Liu HH, Balter P, Tutt T, Choi B, Zhang J, Wang C et al (2007) Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 68(2):531–540PubMedCrossRefGoogle Scholar
  16. 16.
    Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV et al (2002) Precise and realtime measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834PubMedCrossRefGoogle Scholar
  17. 17.
    Xu F, Wang J, Bai S, Li Y, Shen Y, Zhong R et al (2008) Detection of intrafractional tumour position error in radiotherapy utilizing cone beam computed tomography. Radiother Oncol 89(3):311–319PubMedCrossRefGoogle Scholar
  18. 18.
    Gauer T, Sothmann Th, Blanck O, Petersen C, Werner C (2018) Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy. Strahlenther Onkol 194(6):570–579PubMedCrossRefGoogle Scholar
  19. 19.
    Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJ (2008) Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys 70(2):609–618PubMedCrossRefGoogle Scholar
  20. 20.
    McDermott LN, Wendling M, Sonke J‑J, van Herk M, Mijnheer BJ (2007) Replacing pretreatment verification with in vivo EPID dosimetry for prostate IMRT. Int J Radiat Oncol Biol Phys 67(5):1568–1577PubMedCrossRefGoogle Scholar
  21. 21.
    Piermattei A, Greco F, Azario L, Porcelli A, Cilla S, Zucca S et al (2012) A national project for in vivo dosimetry procedures in radiotherapy: first results. Nucl Instrum Methods Phys Res B 274:42–50CrossRefGoogle Scholar
  22. 22.
    Defoor DL, Vazquez-Quino LA, Mavroidis P, Papanikolaou N, Stathakis S (2015) Anatomy-based, patient specific VMAT QA using EPID or MLC log files. J Appl Clin Med Phys 16(3):5283PubMedCrossRefGoogle Scholar
  23. 23.
    Mijnheer B, Olaciregui-Ruiz I, Rozendaal R, Spreeuw H, van Herk M, Mans A (2015) Current status of 3D EPID-based in vivo dosimetry in The Netherlands Cancer Institute. J Phys Conf Ser.  https://doi.org/10.1088/1742-6596/573/1/012014 CrossRefGoogle Scholar
  24. 24.
    Rowshanfarzad P, Mcgarry CK, Barnes MP, Sabet M, Ebert MA (2014) An EPID-based method for comprehensive verification of gantry EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments. Radiat Oncol 9(1):249–259PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bojechko C, Phillps M, Kalet A, Ford EC (2015) A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy. Med Phys 42(9):5363–5369PubMedCrossRefGoogle Scholar
  26. 26.
    Quino LAV, Chen X, Fitzpatrick M, Shi C, Stathakis S, Gutierrez A et al (2014) Patient specific pretreatment QA verification using an EPID approach. Technol Cancer Res Treat 13(1):1–10CrossRefGoogle Scholar
  27. 27.
    International Atomic Energy Agency (2012) Development of procedures for in vivo dosimetry in radiotherapy. Human health report no. 8. IAEA, ViennaGoogle Scholar
  28. 28.
    Nijsten SM, Mijnheer BJ, Dekker AL, Lambin P, Minken AW (2007) Routine individualised patient dosimetry using electronic portal imaging devices. Radiother Oncol 83(1):65–75PubMedCrossRefGoogle Scholar
  29. 29.
    Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900PubMedCrossRefGoogle Scholar
  30. 30.
    Seuntjens J, Lartigau EF, Cora S, Ding GX, Goetsch S, Nuyttens J et al (2014) Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU 14:1–160Google Scholar
  31. 31.
    Sterzing F, Brunner TB, Ernst I, Baus WW, Greve B, Herfarth K et al (2014) Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190:872–881PubMedCrossRefGoogle Scholar
  32. 32.
    Van de Werf E, Lievens Y, Verstraete J, Pauwels K, Van de Bogaert W (2009) Time and motion study of radiotherapy delivery: economic burden of increased quality assurance and IMRT. Radiother Oncol 93(1):137–140PubMedCrossRefGoogle Scholar
  33. 33.
    Hussein M, Tsang Y, Thomas RA, Gouldstone C, Maughan D, Snaith JA et al (2013) A methodology for dosimetry audit of rotational radiotherapy using a commercial detector array. Radiother Oncol 108(1):78–85PubMedCrossRefGoogle Scholar
  34. 34.
    Gardner JK, Clews L, Gordon JJ, Wang S, Greer PB, Siebers JV (2009) Comparison of sources of exit fluence variation for IMRT. Phys Med Biol 54(19):N451–8PubMedCrossRefGoogle Scholar
  35. 35.
    Thwaites DI, Verellen D (2010) Vorsprung durch Technik: evolution, implementation, QA and safety of new technology in radiotherapy. Radiother Oncol 94(2):125–128PubMedCrossRefGoogle Scholar
  36. 36.
    van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer BJ (2008) A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 88(3):289–309PubMedCrossRefGoogle Scholar
  37. 37.
    Mijnheer B, Beddar S, Izewska J, Reft C (2013) In vivo dosimetry in external beam radiotherapy. Med Phys 40(7):70903PubMedCrossRefGoogle Scholar
  38. 38.
    Berry SL, Sheu RD, Polvorosa CS, Wuu CS (2012) Implementation of EPID transit dosimetry based on a through-air dosimetry algorithm. Med Phys 39(1):87–98PubMedCrossRefGoogle Scholar
  39. 39.
    Berry SL, Polvorosa C, Cheng S, Deutsch I, Chao KS, Wuu CS (2014) Initial clinical experience performing patient treatment verification with an electronic portal imaging device transit dosimeter. Int J Radiat Oncol Biol Phys 88(1):204–209PubMedCrossRefGoogle Scholar
  40. 40.
    Peca S, Brown DW (2014) Two-dimensional in vivo dose verification using portal imaging and correlation ratios. J Appl Clin Med Phys 15(4):117–128PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chan MKH, Leung RWK, Lee VWY, Wong MYP, Chiang CL, Law GML et al (2019) Linking dose delivery accuracy and planning target margin in radiosurgery based on dose-volume histograms derived from measurement-guided dose reconstruction. Phys Med Biol 64(4):045009.  https://doi.org/10.1088/1361-6560/aafd47 PubMedCrossRefGoogle Scholar
  42. 42.
    Persoon L, Nijsten S, Wilbrink F, Podesta M, Snaith J, Lustberg T et al (2012) Interfractional trend analysis of dose differences based on 2D transit portal dosimetry. Phys Med Biol 57(20):6445–6458PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity Hospital MuensterMuensterGermany
  2. 2.Department of Radiation OncologyUniversity Hospital of CologneCologneGermany
  3. 3.Department of NeurologyMittelmosel ClinicZellGermany

Personalised recommendations