Advertisement

Acute severe lymphopenia by radiotherapy is associated with reduced overall survival in hepatocellular carcinoma

  • Hwa Kyung Byun
  • Nalee Kim
  • Sangjoon Park
  • Jinsil SeongEmail author
Original Article
  • 80 Downloads

Abstract

Purpose

Radiotherapy (RT) for peripheral organs can affect circulating lymphocytes and cause lymphopenia. We aimed to investigate RT-related lymphopenia in patients with hepatocellular carcinoma (HCC).

Methods

Medical records of 920 patients who received RT for HCC during 2001–2016 were reviewed. Total lymphocyte count (TLC) were obtained and analyzed for clinical outcome. Acute severe lymphopenia (ASL) was defined as TLC <500/μL within the first 3 months of the start of RT.

Results

The median TLCs before and 1 month after the start of RT were 1120 and 310/μl, respectively, and the TLCs did not recover to their initial level after 1 year. Overall, 87.4% of patients developed ASL. The median overall survival was 13.6 and 46.7 months for patients with and without ASL, respectively (p < 0.001). ASL was independently associated with poor overall survival with a hazard ratio (HR) of 1.40; 95% confidence interval (CI), 1.02–1.91 (p = 0.035). In the multivariate analysis, larger planning target volume (HR, 1.02; 95% CI, 1.01–1.03; p < 0.001) and lower baseline TLC (HR, 0.86; 95% CI, 0.82–0.91; p < 0.001) were significantly associated with an increased risk of ASL, while hypofractionation (stereotactic body RT: HR, 0.19; 95% CI, 0.07–0.49; p = 0.001) was significantly associated with a reduced risk of ASL.

Conclusion

Acute severe lymphopenia after RT was associated with poor overall survival in patients with HCC. Stereotactic body RT may reduce the risk of ASL. Further attention to and research on the cause, prevention, and reversal of this phenomenon are needed.

Keywords

Liver cancer Total lymphocyte count Hypofractionation Planning target volume Immunotherapy 

Akute schwere Lymphopenie durch Strahlentherapie ist beim hepatozellulären Karzinom mit reduziertem Gesamtüberleben assoziiert

Zusammenfassung

Zielsetzung

Strahlentherapie (RT) für Peripherieorgane kann zirkulierende Lymphozyten schädigen und Lymphopenie verursachen. Wir haben zum Ziel, RT-bezogene Lymphopenie bei Patienten mit Leberkarzinom zu erforschen (HCC).

Methoden

Überprüft wurden medizinische Aufzeichnungen von 920 Patienten, die in den Jahren 2001–2016 eine Strahlentherapie bei HCC erhalten hatten. Die Gesamtanzahl der Lymphozyten (TLC) wurde bestimmt und für klinische Ergebnisse analysiert. Akute schwere Lymphopenie (ASL) wurde als TLC <500/μl innerhalb der ersten 3 Monate nach Beginn der RT definiert.

Ergebnisse

Der Mittelwert der TLC vor und 1 Monat nach Beginn der RT lag bei jeweils 1120 und 310/μl, und die TLC erreichte auch nach 1 Jahr nicht ihr Ursprungsniveau. Insgesamt entwickelten 87,4% der Patienten eine ASL. Die mittlere Gesamtüberlebensrate lag jeweils bei 13,6 und 46,7 Monaten bei Patienten mit und ohne ASL (p < 0,001). ASL wurde unabhängig mit schlechter Überlebensrate in Verbindung gesetzt (Hazard Ratio [HR] 1,40; 95%-Konfidenzintervall [KI] 1,02–1,91; p = 0,035). In der mehrdimensionalen Analyse wurden geplante Zielmenge (HR 1,02; 95%-KI 1,01–1,03; p < 0,001) und geringere TLC-Basislinie (HR 0,86; 95%-KI 0,82–0,91; p < 0,001) maßgeblich mit einem erhöhten Risiko von ASL in Verbindung gesetzt, während Hypofraktionierung (stereotaktische Körper-RT: HR 0,19; 95%-KI 0,07–0,49; p = 0,001) mit einem reduzierten Risiko von ASL in Verbindung gesetzt wird.

Schlussfolgerung

ASL nach RT wurde mit schlechter allgemeiner Überlebensrate bei Patienten mit HCC in Verbindung gebracht. Stereotaktische Körper-RT kann das Risiko von ASL reduzieren. Zusätzliche Aufmerksamkeit und Ursachenforschung, Verhütung und Umkehr dieses Phänomens werden benötigt.

Schlüsselwörter

Leberkrebs Gesamtanzahl der Lymphozyten Hypofraktionierung Geplante Zielmenge Immuntherapie 

Notes

Funding

This study was supported by National Nuclear R&D Program through a National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant number; 2017070426)

Compliance with ethical guidelines

Conflict of interest

H.K. Byun, N. Kim, S. Park and J. Seong declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

66_2019_1462_MOESM1_ESM.tif (5 mb)
Supplementary Fig. 1 The probability of ASL in relation to increasing PTV size

References

  1. 1.
    Boon T, Coulie PG, VandenEynde B (1997) Tumor antigens recognized by T cells. Immunol Today 18(6):267–268CrossRefGoogle Scholar
  2. 2.
    Ku GY, Yuan J, Page DB, Schroeder SE, Panageas KS, Carvajal RD, Chapman PB, Schwartz GK, Allison JP, Wolchok JD (2010) Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer 116(7):1767–1775CrossRefGoogle Scholar
  3. 3.
    Grossman SA, Ellsworth S, Campian J, Wild AT, Herman JM, Laheru D, Brock M, Balmanoukian A, Ye X (2015) Survival in Patients With Severe Lymphopenia Following Treatment With Radiation and Chemotherapy for Newly Diagnosed Solid Tumors. J Natl Compr Canc Netw 13(10):1225–1231CrossRefGoogle Scholar
  4. 4.
    Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res 17(16):5473–5480Google Scholar
  5. 5.
    Huang J, DeWees TA, Badiyan SN, Speirs CK, Mullen DF, Fergus S, Tran DD, Linette G, Campian JL, Chicoine MR, Kim AH, Dunn G, Simpson JR, Robinson CG (2015) Clinical and dosimetric predictors of acute severe Lymphopenia during radiation therapy and concurrent Temozolomide for high-grade glioma. Int J Radiat Oncol Biol Phys 92(5):1000–1007CrossRefGoogle Scholar
  6. 6.
    Liu LT, Chen QY, Tang LQ, Guo SS, Guo L, Mo HY, Chen MY, Zhao C, Guo X, Qian CN, Zeng MS, Bei JX, Tan J, Chen S, Hong MH, Shao JY, Sun Y, Ma J, Mai HQ (2018) The prognostic value of treatment-related Lymphopenia in Nasopharyngeal carcinoma patients. Cancer Res Treat 50(1):19–29CrossRefGoogle Scholar
  7. 7.
    Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, Grau S, Hiraoka N, Eckstein V, Ecker RC, Korff T, von Deimling A, Unterberg A, Beckhove P, Herold-Mende C (2011) Effector T‑cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin. Cancer Res 17(13):4296–4308Google Scholar
  8. 8.
    Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103CrossRefGoogle Scholar
  9. 9.
    Campian JL, Sarai G, Ye X, Marur S, Grossman SA (2014) Association between severe treatment-related lymphopenia and progression-free survival in patients with newly diagnosed squamous cell head and neck cancer. Head Neck 36(12):1747–1753CrossRefGoogle Scholar
  10. 10.
    Wild AT, Herman JM, Dholakia AS, Moningi S, Lu Y, Rosati LM, Hacker-Prietz A, Assadi RK, Saeed AM, Pawlik TM, Jaffee EM, Laheru DA, Tran PT, Weiss MJ, Wolfgang CL, Ford E, Grossman SA, Ye X, Ellsworth SG (2016) Lymphocyte-sparing effect of Stereotactic body radiation therapy in patients with Unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 94(3):571–579CrossRefGoogle Scholar
  11. 11.
    Wild AT, Ye X, Ellsworth SG, Smith JA, Narang AK, Garg T, Campian J, Laheru DA, Zheng L, Wolfgang CL, Tran PT, Grossman SA, Herman JM (2015) The association between Chemoradiation-related Lymphopenia and clinical outcomes in patients with locally advanced pancreatic Adenocarcinoma. Am J Clin Oncol 38(3):259–265CrossRefGoogle Scholar
  12. 12.
    Button LN, Dewolf WC, Newburger PE, Jacobson MS, Kevy SV (1981) The effects of irradiation on blood components. Transfusion 21(4):419–426CrossRefGoogle Scholar
  13. 13.
    Nakamura N, Kusunoki Y, Akiyama M (1990) Radiosensitivity of CD4 or CD8 positive human T‑lymphocytes by an in vitro colony formation assay. Radiat Res 123(2):224–227CrossRefGoogle Scholar
  14. 14.
    Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E (2013) The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest 31(2):140–144CrossRefGoogle Scholar
  15. 15.
    Petrini B, Wasserman J, Blomgren H, Baral E, Strender LE, Wallgren A (1979) Blood lymphocyte subpopulations in breast cancer patients following post-operative adjuvant chemotherapy or radiotherapy. Clin Exp Immunol 38(2):361–365Google Scholar
  16. 16.
    Rudra S, Hui C, Rao YJ, Samson P, Lin AJ, Chang X, Tsien C, Fergus S, Mullen D, Yang D, Thotala D, Hallahan D, Campian JL, Huang J (2018) Effect of radiation treatment volume reduction on Lymphopenia in patients receiving chemoradiotherapy for Glioblastoma. Int J Radiat Oncol Biol Phys 101(1):217–225CrossRefGoogle Scholar
  17. 17.
    Choi SH, Seong J (2018) Strategic application of radiotherapy for hepatocellular carcinoma. Clin Mol Hepatol 24(2):114–134CrossRefGoogle Scholar
  18. 18.
    Byun HK, Kim HJ, Im YR, Kim DY, Han KH, Seong JS (2019) Dose escalation by intensity modulated radiotherapy in liver-directed concurrent chemoradiotherapy for locally advanced BCLC stage C hepatocellular carcinoma. Radiother Oncol 133:1–8CrossRefGoogle Scholar
  19. 19.
    National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Hepatobiliary Cancers 2016; Version 2. 2016.Google Scholar
  20. 20.
    Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, Kudo M, Johnson P, Wagner S, Orsini LS, Sherman M (2015) Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int 35(9):2155–2166CrossRefGoogle Scholar
  21. 21.
    Liu J, Zhao Q, Deng W, Lu J, Xu X, Wang R, Li X, Yue J (2017) Radiation-related lymphopenia is associated with spleen irradiation dose during radiotherapy in patients with hepatocellular carcinoma. Radiat Oncol 12(1):90CrossRefGoogle Scholar
  22. 22.
    Falcke SE, Ruhle PF, Deloch L, Fietkau R, Frey B, Gaipl US (2018) Clinically Relevant Radiation Exposure Differentially Impacts Forms of Cell Death in Human Cells of the Innate and Adaptive Immune System. Int J Mol Sci 19(11):3574CrossRefGoogle Scholar
  23. 23.
    Heylmann D, Badura J, Becker H, Fahrer J, Kaina B (2018) Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death Dis 9.  https://doi.org/10.1038/s41419-018-1095-7 Google Scholar
  24. 24.
    Belka C, Ottinger H, Kreuzfelder E, Weinmann M, Lindemann M, Lepple-Wienhues A, Budach W, Grosse-Wilde H, Bamberg M (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50(2):199–204CrossRefGoogle Scholar
  25. 25.
    Ruhle PF, Fietkau R, Gaipl US, Frey B (2016) Development of a Modular Assay for Detailed Immunophenotyping of Peripheral Human Whole Blood Samples by Multicolor Flow Cytometry. Int J Mol Sci 17(8):1316CrossRefGoogle Scholar
  26. 26.
    Meyer KK (1970) Radiation-induced lymphocyte-immune deficiency. A factor in the increased visceral metastases and decreased hormonal responsiveness of breast cancer. Arch Surg 101(2):114–121CrossRefGoogle Scholar
  27. 27.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213CrossRefGoogle Scholar
  28. 28.
    Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936Google Scholar
  29. 29.
    Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL, Freeman SM (1997) Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 74(5):492–501CrossRefGoogle Scholar
  30. 30.
    Ando E, Tanaka M, Yamashita F, Kuromatsu R, Yutani S, Fukumori K, Sumie S, Yano Y, Okuda K, Sata M (2002) Hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma with portal vein tumor thrombosis: analysis of 48 cases. Cancer 95(3):588–595CrossRefGoogle Scholar
  31. 31.
    Dawson LA, Eccles C, Craig T (2006) Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol 45(7):856–864CrossRefGoogle Scholar
  32. 32.
    Feng M, Ben-Josef E (2011) Radiation therapy for hepatocellular carcinoma. Semin Radiat Oncol 21(4):271–277CrossRefGoogle Scholar
  33. 33.
    El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela CC, Lang L, Neely J, Tang H, Dastani HB, Melero I (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088):2492–2502CrossRefGoogle Scholar
  34. 34.
    Ruckert M, Deloch L, Fietkau R, Frey B, Hecht M, Gaipl US (2018) Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther Onkol 194(6):509–519CrossRefGoogle Scholar
  35. 35.
    Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11(5):330–342CrossRefGoogle Scholar
  36. 36.
    Ellsworth S, Balmanoukian A, Kos F, Nirschl CJ, Nirschl TR, Grossman SA, Luznik L, Drake CG (2014) Sustained CD4(+) T cell-driven lymphopenia without a compensatory IL-7/IL-15 response among high-grade glioma patients treated with radiation and temozolomide. Oncoimmunology 3(1):e27357CrossRefGoogle Scholar
  37. 37.
    Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H, Nishikawa SI (1993) Expression and Function of the Interleukin-7 Receptor in Murine Lymphocytes. Proc Natl Acad Sci USA 90(19):9125–9129CrossRefGoogle Scholar
  38. 38.
    Anon. (2016) Study of the Effect IL 7/NT-I7 on CD4 Counts in Patients With High Grade Gliomas. https://clinicaltrials.gov/ct2/show/NCT02659800?cond=IL-7+high+grade+glioma&rank=1 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiation Oncology, Yonsei Cancer CenterYonsei University College of MedicineSeodaemun-gu, SeoulKorea (Republic of)

Personalised recommendations