Advertisement

Re-irradiation in locally recurrent lung cancer patients

  • Ingmar SchlamppEmail author
  • Juliane Rieber
  • Sebastian Adeberg
  • Farastuk Bozorgmehr
  • Claus Peter Heußel
  • Martin Steins
  • Jutta Kappes
  • Hans Hoffmann
  • Thomas Welzel
  • Jürgen Debus
  • Stefan Rieken
Original Article
  • 35 Downloads

Abstract

Purpose

Lung cancer remains one of the tumour diagnoses with high lethality, although innovative treatment approaches have yielded improvements in local control and survival rates. There is still no consensus on how to treat local relapse in patients after first-line treatments. Radiotherapy may be considered in this situation; however, data supporting its effectiveness are rare. The purpose of this retrospective analysis was to evaluate outcomes of patients re-irradiated for thoracic tumours in terms of overall survival (OS), local progression-free survival (LPFS), toxicity and dose–volume parameters.

Patients and methods

Sixty-two patients with locally recurrent previously irradiated lung cancer were analysed retrospectively (NSCLC n = 52, SCLC n = 10). Target volumes both in lung and mediastinum were re-irradiated with conventional three-dimensional or intensity-modulated radiotherapy techniques. Median overall dose of re-irradiation was 38.5 Gy (range 20–60 Gy) with a median single dose per fraction of 2 Gy (1.8–3.0 Gy). Clinical documents and treatment plans were evaluated.

Results

Median follow-up was 8.2 months (range 0–27 months). OS following re-irradiation was 9.3 months (range: 0–27 months) and LPFS was 6.5 months (range: 0–24 months). OS and LPFS were not affected by histology, total dose or patient age and gender. OS was improved in patients whose re-irradiation volumes included less than two mediastinal lymph node stations (p = 0.016). Twelve patients suffered from pneumonitis ≥grade II (19%) and two from pneumonitis grade III. One patient presumably died from pneumonitis grade V. A slight decline in forced expiratory volume (FEV1) was detected in post-re-irradiation lung function testing.

Conclusions

Re-irradiation is an option for patients with tumour recurrence to control local progression and lower the symptom burden. Oncological outcome appears to be affected by size, location of mediastinal target volumes and lung function. Prospective clinical trials are warranted to substantiate the role of re-irradiation in recurrent lung cancer.

Keywords

Lung cancer Radiotherapy Toxicity Pneumonitis Tumour relapse 

Rebestrahlung bei Lokalrezidiven von Lungenkarzinomen

Zusammenfassung

Hintergrund

Lungenkarzinome bleiben eine der letalsten Tumorerkrankungen und innovative Behandlungsansätze haben nur zu geringfügigen Verbesserungen der lokalen Kontroll- und Überlebensraten geführt. Es gibt keinen Konsens darüber, wie Lokalrezidive zu behandeln sind. In dieser Situation kann eine Rebestrahlung in Erwägung gezogen werden. Daten zur Effektivität der Strahlentherapie bei Rezidiven sind jedoch selten. Diese retrospektive Analyse untersucht Ergebnisse nach Rebestrahlung von Lungenkarzinomen hinsichtlich Gesamtüberleben (OS), lokalrezidivfreiem Überleben (LPFS), Toxizität und Dosis-Volumen-Parametern.

Patienten und Methoden

Insgesamt wurden 62 Patienten mit Lokalrezidiven von Lungenkarzinomen (NSCLC n = 52, SCLC n = 10) retrospektiv untersucht. Die mediane Nachbeobachtungszeit betrug 8,2 Monate (Spanne 0–27 Monate). Zielvolumina sowohl in der Lunge als auch im Mediastinum wurden mit dreidimensionaler oder intensitätsmodulierter Technik erneut bestrahlt. Die mediane Gesamtdosis der Rebestrahlung betrug 38,5 Gy (Spanne 20–60 Gy) mit einer mittleren Einzeldosis von 2 Gy (Spanne 1,8–3,0 Gy). Klinische Dokumente und Behandlungspläne wurden ausgewertet.

Ergebnisse

Das mediane Follow-up war 8,2 Monate (Spanne 0–27 Monate). Das mediane OS nach Rebestrahlung betrug 9,3 Monate (Spanne 0–27 Monate) und das mediane LPFS war 6,5 Monate (Spanne 0–24 Monate). OS und LPFS wurden nicht durch Histologie, Gesamtdosis oder Alter und Geschlecht des Patienten beeinflusst. Das OS war bei Patienten besser, deren Rebestrahlungsvolumen weniger als 2 mediastinale Lymphknotenstationen umfasste (p = 0,016). Zwölf Patienten erlitten eine Pneumonitis ≥Grad II (19 %) und zwei eine Pneumonitis Grad III. Ein Patient starb an einer Pneumonitis Grad V. Ein leichter Abfall der Einsekundenkapazität (FEV1) wurde bei Lungenfunktionstests nach der Rebestrahlung festgestellt.

Schlussfolgerung

Die Rebestrahlung ist eine Möglichkeit für Patienten mit Tumorrezidiven, um die lokale Progression zu kontrollieren und die Symptombelastung zu verringern. Das onkologische Ergebnis scheint durch Größe, Lokalisation mediastinaler Zielvolumina und Lungenfunktion beeinflusst zu sein. Prospektive klinische Studien sind gerechtfertigt, um die Rolle der Rebestrahlung bei rezidivierten Lungentumoren zu belegen.

Schlüsselwörter

Lungenkarzinome Radiotherapie Toxizität Pneumonitis Tumorrezidiv 

Notes

Acknowledgements

We thank Samuel Macrom for proofreading the manuscript.

Author Contribution

I. Schlampp and S. Rieken developed and planned the retrospective analysis. I. Schlampp and S. Rieken are responsible for statistical considerations/basis of the analysis and made the data collection. J. Rieber, and S. Adeberg were responsible for the radiation treatment and patient care. F. Bozorgmehr, C.P. Heußel, M. Steins, J. Kappes and H. Hoffmann were responsible for patient selection, interdisciplinary decision making and follow-up examinations. T. Welzel performed the treatment planning CT examinations. J. Debus supervised the treatment and approved the study. All authors read and approved the final manuscript.

Compliance with ethical guidelines

Conflict of interest

C.P. Heußel is a stock owner of Stada and GSK and has received consultation and lecture fees and/or honoraria from Schering-Plough, Pfizer, Basilea, Boehringer Ingelheim, Novartis, Roche, Astellas, Gilead, MSD, Lilly, Intermune, Fresenius, Olympus, Essex, AstraZeneca, Bracco, MEDA Pharma, Chiesi, Siemens, Covidien, Pierre Fabre, Grifols and Bayer and research funding from Siemens, Pfizer, MeVis and Boehringer Ingelheim. I. Schlampp, J. Rieber, S. Adeberg, F. Bozorgmehr, M. Steins, J. Kappes, H. Hoffmann, T. Welzel, J. Debus and S. Rieken declare that they have no competing interests.

Ethical standards

All patients provided written informed consent after thorough information about treatment concepts and possible side effects. The responsible ethics committee approved the analysis.

References

  1. 1.
    Malvezzi M, Carioli G, Bertuccio P et al (2016) European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann Oncol 27:725–731CrossRefGoogle Scholar
  2. 2.
    Rodrigues G, Choy H, Bradley J et al (2015) Definitive radiation therapy in locally advanced non-small cell lung cancer: executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based clinical practice guideline. Pract Radiat Oncol 5:141–148CrossRefGoogle Scholar
  3. 3.
    Bezjak A, Temin S, Franklin G et al (2015) Definitive and adjuvant radiotherapy in locally advanced non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. J Clin Oncol 33:2100–2105CrossRefGoogle Scholar
  4. 4.
    Rudin CM, Ismaila N, Hann CL et al (2015) Treatment of small-cell lung cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians Guideline. J Clin Oncol 33:4106–4111CrossRefGoogle Scholar
  5. 5.
    Curran WJ, Paulus R, Langer CJ et al (2011) Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst 103:1452–1460CrossRefGoogle Scholar
  6. 6.
    Turrisi AT, Kim K, Blum R et al (1999) Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 340:265–271CrossRefGoogle Scholar
  7. 7.
    Scagliotti GV, Parikh P, Von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551CrossRefGoogle Scholar
  8. 8.
    De Ruysscher D, Faivre-finn C, Le pechoux C et al (2014) High-dose re-irradiation following radical radiotherapy for non-small-cell lung cancer. Lancet Oncol 15:e620–e624CrossRefGoogle Scholar
  9. 9.
    Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723CrossRefGoogle Scholar
  10. 10.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRefGoogle Scholar
  11. 11.
    EORTC (European Organisation for Research and Treatment of Cancer) (2009) Common toxicity Criteria (CTC) v 4.0. http://www.eortc.org/investigators/guidelines/ctc/ Google Scholar
  12. 12.
    Bradley JD, Paulus R, Komaki R et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199CrossRefGoogle Scholar
  13. 13.
    Cox JD (2012) Are the results of RTOG 0617 mysterious? Int J Radiat Oncol Biol Phys 82:1042–1044CrossRefGoogle Scholar
  14. 14.
    Drodge CS, Ghosh S, Fairchild A (2014) Thoracic reirradiation for lung cancer: a literature review and practical guide. Ann Palliat Med 3:75–91Google Scholar
  15. 15.
    Jeremić B, Videtic GM (2011) Chest reirradiation with external beam radiotherapy for locally recurrent non-small-cell lung cancer: a review. Int J Radiat Oncol Biol Phys 80:969–977CrossRefGoogle Scholar
  16. 16.
    Tada T, Fukuda H, Matsui K et al (2005) Non-small-cell lung cancer: reirradiation for loco-regional relapse previously treated with radiation therapy. Int J Clin Oncol 10:247–250CrossRefGoogle Scholar
  17. 17.
    Cetingoz R, Arican-alicikus Z, Nur-demiral A et al (2009) Is re-irradiation effective in symptomatic local recurrence of non small cell lung cancer patients? A single institution experience and review of the literature. J Buon 14:33–40Google Scholar
  18. 18.
    Kruser TJ, Mccabe BP, Mehta MP et al (2014) Reirradiation for locoregionally recurrent lung cancer: outcomes in small cell and non-small cell lung carcinoma. Am J Clin Oncol 37:70–76CrossRefGoogle Scholar
  19. 19.
    Darby SC, Ewertz M, Mcgale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998CrossRefGoogle Scholar
  20. 20.
    Ming X, Feng Y, Liu H et al (2015) Cardiac exposure in the dynamic conformal arc therapy, intensity-modulated radiotherapy and volumetric modulated arc therapy of lung cancer. PLoS ONE 10:e144211CrossRefGoogle Scholar
  21. 21.
    Griffioen GH, Dahele M, De haan PF, al at (2014) High-dose, conventionally fractionated thoracic reirradiation for lung tumors. Lung Cancer 83:356–362CrossRefGoogle Scholar
  22. 22.
    Green N, Melbye RW (1982) Lung cancer: retreatment of local recurrence after definitive irradiation. Cancer 49:865–868CrossRefGoogle Scholar
  23. 23.
    Okamoto Y, Murakami M, Yoden E et al (2002) Reirradiation for locally recurrent lung cancer previously treated with radiation therapy. Int J Radiat Oncol Biol Phys 52:390–396CrossRefGoogle Scholar
  24. 24.
    Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76:70–76CrossRefGoogle Scholar
  25. 25.
    Evans JD, Gomez DR, Amini A et al (2013) Aortic dose constraints when reirradiating thoracic tumors. Radiother Oncol 106:327–332CrossRefGoogle Scholar
  26. 26.
    Schytte T, Bentzen SM, Brink C, Hansen O (2015) Changes in pulmonary function after definitive radiotherapy for NSCLC. Radiother Oncol 117:23–28CrossRefGoogle Scholar
  27. 27.
    Borst GR, De jaeger K, Belderbos JS et al (2005) Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys 62:639–644CrossRefGoogle Scholar
  28. 28.
    Miller KL, Zhou SM, Barrier RC et al (2003) Long-term changes in pulmonary function tests after definitive radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 56:611–615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ingmar Schlampp
    • 1
    • 2
    • 3
    Email author
  • Juliane Rieber
    • 1
    • 2
    • 3
  • Sebastian Adeberg
    • 1
    • 2
    • 3
  • Farastuk Bozorgmehr
    • 4
    • 5
  • Claus Peter Heußel
    • 5
    • 6
    • 7
  • Martin Steins
    • 4
    • 5
  • Jutta Kappes
    • 4
    • 5
    • 8
  • Hans Hoffmann
    • 9
  • Thomas Welzel
    • 1
    • 2
    • 3
  • Jürgen Debus
    • 1
    • 2
    • 3
  • Stefan Rieken
    • 1
    • 2
    • 3
  1. 1.University Hospital of Heidelberg, Department of Radiation OncologyUniversity of HeidelbergHeidelbergGermany
  2. 2.HIRO – Heidelberger Institut für RadioOnkologieDeutsches KrebsforschungszentrumHeidelbergGermany
  3. 3.National Center for Tumor diseases (NCT)HeidelbergGermany
  4. 4.Department of Thoracic OncologyThoraxlinik, Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg UniversityHeidelbergGermany
  5. 5.Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL)HeidelbergGermany
  6. 6.Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik, University of HeidelbergHeidelbergGermany
  7. 7.Diagnostic and Interventional RadiologyUniversity of HeidelbergHeidelbergGermany
  8. 8.Department of PneumologyThoraxklinik, Heidelberg UniversityHeidelbergGermany
  9. 9.Dept. of Thoracic SurgeryThoraxklinik, Heidelberg UniversityHeidelbergGermany

Personalised recommendations