Advertisement

A fatal case of Fournier’s gangrene during neoadjuvant radiotherapy for rectal cancer

  • Rainer Johannes KlementEmail author
  • Gabriele Schäfer
  • Reinhart A. Sweeney
Case Study
  • 48 Downloads

Abstract

Purpose

To report the development of an ultimately fatal occurrence of Fournier’s gangrene in a rectal cancer patient undergoing neoadjuvant radiotherapy without chemotherapy.

Methods

A 53-year-old male patient with G2 cT3 cN1a cM0 stage IIIB adenocarcinoma of the lower rectum and several comorbidities including ulcerative colitis was treated with 56 Gy to the primary tumor in 28 fractions because he declined the recommended simultaneous chemotherapy. He was also enrolled in the ketogenic diet arm of our KETOCOMP study, so that prospective measurements of blood parameters, quality of life, and body composition were made.

Results

The patient died 6 days after completion of radiotherapy due to septic shock associated with Fournier’s gangrene reaching from the right buttock into the gluteal muscles and descending into the scrotum. In retrospect, there were several signs probably indicating the development of the gangrene: (i) a decline in bioelectrical phase angle; (ii) an accelerated weight and fat-free mass loss starting in the third week of radiotherapy; (iii) an increase in C-reactive protein (CRP) and concurrent drop in high-density lipoprotein (HDL) cholesterol and insulin-like growth factor(IGF)-1 concentrations; and (iv) the occurrence of a sharp pain in the perianal region reported in the fifth week of radiotherapy. Notably, his self-reported quality of life score was the same at the end of as before radiotherapy.

Conclusions

This case highlights the occurrence of Fournier’s gangrene as an extremely rare but life-threatening complication during neoadjuvant radiotherapy for rectal cancer which should be refreshed in the awareness of radiation oncologists and radiologists.

Keywords

Bioimpedance analysis Body composition Grade V toxicity KETOCOMP study Ketogenic diet 

Entwicklung eines tödlichen Fournier-Gangräns während neoadjuvanter Bestrahlung eines Rektumkarzinoms

Zusammenfassung

Zielsetzung

Bericht über die Entwicklung eines zum Tode führenden Fournier-Gangräns während neoadjuvanter Bestrahlung eines Rektumkarzinoms ohne Chemotherapie.

Methoden

Ein 53-jähriger männlicher Patient mit einem Adenokarzinom des unteren Rektums im Stadium IIIB (G2 cT3 cN1a cM0) sowie mehreren Komorbiditäten, unter anderem einer Colitis ulcerosa, wurde wegen Ablehnung einer simultanen Chemotherapie neoadjuvant mit 56 Gy in 28 Fraktionen bestrahlt. Zudem unterzog er sich gleichzeitig einer ketogenen Ernährungsintervention innerhalb unserer KETOCOMP Studie, so dass prospektive Messungen von Blutparametern, Lebensqualität und Körperzusammensetzung gemacht wurden.

Ergebnisse

Der Patient verstarb 6 Tage nach der Strahlentherapie an einem septischen Schock im Zusammenhang mit einem ausgedehnten Fournier-Gangrän, welches sich von der rechten Gesäßhälfte, die Glutealmuskulatur infiltrierend, bis ins Skrotum erstreckte. Retrospektiv ergaben sich mehrere Hinweise auf die Entwicklung eines Gangräns: (i) eine Abnahme des bioelektrischen Phasenwinkels; (ii) eine beschleunigte Abnahme des Körpergewichts und fettfreier Masse ab der dritten Therapiewoche; (iii) ein Anstieg der C-reaktives Protein(CRP)-Konzentration bei gleichzeitiger Abnahme des High-density Lipoprotein(HDL)-Cholesterin- und dem Insulin-ähnlichen Wachstumsfaktor(IGF)-1-Spiegels; (iv) das Auftreten stechender perianaler Schmerzen beginnend ab der fünften Therapiewoche. Bemerkenswerterweise gab der Patient subjektiv die gleiche Lebensqualität am Ende wie zu Beginn der Strahlentherapie an.

Schlussfolgerung

Auch wenn die Entwicklung eines Fournier-Gangräns eine extrem seltene Nebenwirkung neoadjuvanter Bestrahlung von Rektumkarzinomen darstellt, verdeutlicht dieser Fall die Ernsthaftigkeit derselben, der sich Radioonkologen und Radiologen bewusst sein sollten.

Schlüsselwörter

Bioimpedanz-Analyse Körperzusammensetzung Grad V Nebenwirkung KETOCOMP Studie Ketogene Ernährung 

Notes

Conflict of interest

R.J. Klement, G. Schäfer, and R.A. Sweeney declare that they have no competing interests.

Supplementary material

66_2018_1401_MOESM1_ESM.tiff (136 kb)
Supplementary Fig. 1: Fasting blood glucose and β‑hydroxybutyrate concentrations. Measurements were performed weekly in the morning at the same time as BIA and weighing.
66_2018_1401_MOESM2_ESM.docx (14 kb)
Supplementary Table 1: Selected biochemical blood parameters taken during the course of radiotherapy.

References

  1. 1.
    Smith GL, Bunker CB, Dinneen MD (1998) Fournier’s gangrene. Br J Urol 81:347–355CrossRefGoogle Scholar
  2. 2.
    Eke N (2000) Fournier’s gangrene: a review of 1726 cases. Br J Surg 87:718–728.  https://doi.org/10.1046/j.1365-2168.2000.01497.x CrossRefPubMedGoogle Scholar
  3. 3.
    Nabha KS, Badwan K, Kerfoot BP (2004) Fournier’s gangrene as a complication of steroid enema use for treatment of radiation proctitis. Urology 64:587–588.  https://doi.org/10.1016/j.urology.2004.05.034 CrossRefPubMedGoogle Scholar
  4. 4.
    Bruketa T, Majerovic M, Augustin G (2015) Rectal cancer and Fournier’s gangrene—current knowledge and therapeutic options. World J Gastroenterol 21:9002–9020.  https://doi.org/10.3748/wjg.v21.i30.9002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pittaka M, Georgiou C, Polyviou P et al (2018) Fournier Gangrene in a patient receiving chemo–radiation for rectal cancer. Oxf Med Case Reports 2018:68–69.  https://doi.org/10.1093/omcr/omx101 CrossRefGoogle Scholar
  6. 6.
    Czymek R, Hildebrand P, Kleemann M et al (2009) New insights into the epidemiology and etiology of Fournier’s gangrene: a review of 33 patients. Infection 37:306–312.  https://doi.org/10.1007/s15010-008-8169-x CrossRefPubMedGoogle Scholar
  7. 7.
    Klement RJ, Sweeney RA (2016) Impact of a ketogenic diet intervention during radiotherapy on body composition: II. Protocol of a randomised phase I study (KETOCOMP). Clin Nutr ESPEN 12:e1–e6.  https://doi.org/10.1016/j.clnesp.2015.11.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Arends J, Bachmann P, Baracos V et al (2017) ESPEN guidelines on nutrition in cancer patients. Clin Nutr 36:11–48.  https://doi.org/10.1016/j.clnu.2016.07.015 CrossRefGoogle Scholar
  9. 9.
    Gupta D, Lammersfeld CA, Burrows JL et al (2004) Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr 80:1634–1638CrossRefGoogle Scholar
  10. 10.
    Thibault R, Makhlouf A‑M, Mulliez A et al (2016) Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project. Intensive Care Med 42:1445–1453.  https://doi.org/10.1007/s00134-016-4468-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Tanaka S, Labreuche J, Drumez E et al (2017) Low HDL levels in sepsis versus trauma patients in intensive care unit. Ann Intensive Care 7:4–11.  https://doi.org/10.1186/s13613-017-0284-3 CrossRefGoogle Scholar
  12. 12.
    Bermudes ACG, de Carvalho WB, Zamberlan P et al (2018) Changes in lipid metabolism in pediatric patients with severe sepsis and septic shock. Nutrition 47:104–109.  https://doi.org/10.1016/j.nut.2017.09.015 CrossRefPubMedGoogle Scholar
  13. 13.
    Wu A, Hinds CJ, Thiemermann C (2004) High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock 21:210–221.  https://doi.org/10.1097/01.shk.0000111661.09279.82 CrossRefPubMedGoogle Scholar
  14. 14.
    Morin EE, Guo L, Schwendeman A, Li XA (2015) HDL in sepsis - risk factor and therapeutic approach. Front Pharmacol 6:1–9.  https://doi.org/10.3389/fphar.2015.00244 CrossRefGoogle Scholar
  15. 15.
    Klement RJ, Fink MK (2016) Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer. Oncogenesis 5:e193.  https://doi.org/10.1038/oncsis.2016.2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xu L, Zhang W, Sun R et al (2017) IGF-1 may predict the severity and outcome of patients with sepsis and be associated with microRNA-1 level changes. Exp Ther Med 14:797–804.  https://doi.org/10.3892/etm.2017.4553 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Masino SA, Ruskin DN (2013) Ketogenic diets and pain. J Child Neurol 28:993–1001.  https://doi.org/10.1177/0883073813487595 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Youm YH, Nguyen KY, Grant RW et al (2015) The ketone metabolite β‑hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269.  https://doi.org/10.1038/nm.3804 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bae HR, Kim DH, Park MH et al (2016) β‑Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget 7:66444–66454.  https://doi.org/10.18632/oncotarget.12119 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166:1–15.  https://doi.org/10.1111/j.1365-2249.2011.04440.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang A, Huen SC, Luan HH et al (2016) Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166:1512–1518.  https://doi.org/10.1016/j.cell.2016.07.026 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyLeopoldina Hospital SchweinfurtSchweinfurtGermany

Personalised recommendations