Advertisement

Strahlentherapie und Onkologie

, Volume 195, Issue 1, pp 32–42 | Cite as

Exposure of remote organs and associated cancer risks from tangential and multi-field breast cancer radiotherapy

  • C. Simonetto
  • H. Rennau
  • J. Remmele
  • S. Sebb
  • P. Kundrát
  • M. Eidemüller
  • U. Wolf
  • G. Hildebrandt
Original Article
  • 99 Downloads

Abstract

Purpose

With the ever-increasing cure rates in breast cancer, radiotherapy-induced cancers have become an important issue. This study aimed to estimate secondary cancer risks for different treatment techniques, taking into account organs throughout the body.

Material and methods

Organ doses were evaluated for a tangential three-dimensional conformal (3D-CRT) and a multi-field intensity-modulated radiotherapy (IMRT) plan using a validated, Monte Carlo-based treatment planning system. Effects of wedges and of forward versus inverse planning were systematically investigated on the basis of phantom measurements. Organ-specific cancer risks were estimated using risk coefficients derived from radiotherapy patients or from the atomic bomb survivors.

Results

In the 3D-CRT plan, mean organ doses could be kept below 1 Gy for more remote organs than the lung, heart, and contralateral breast, and decreased to a few cGy for organs in the lower torso. Multi-field IMRT led to considerably higher mean doses in organs at risk, the difference being higher than 50% for many organs. Likewise, the peripheral radiation burden was increased by external wedges. No difference was observed for forward versus inverse planning. Despite the lower doses, the total estimated secondary cancer risk in more remote organs was comparable to that in the lung or the contralateral breast. For multi-field IMRT it was 75% higher than for 3D-CRT without external wedges.

Conclusion

Remote organs are important for assessment of radiation-induced cancer risk. Remote doses can be reduced effectively by application of a tangential field configuration and a linear accelerator set-up with low head scatter radiation.

Keywords

Radiation risk Secondary cancer Peripheral dose Risk models IMRT 3D-CRT 

Dosen und Zweittumorrisiken in entfernt liegenden Organen bei tangentialer und bei Multifeld-Strahlentherapie der Brust

Zusammenfassung

Ziel

Wegen steigender Heilungsraten von Brustkrebs gewinnt das Risiko, durch die Strahlentherapie Zweittumore zu verursachen, an Bedeutung. Ziel dieser Studie war es, die Zweittumorrisiken für verschiedene Behandlungstechniken abzuschätzen und dabei auch die Organe zu berücksichtigen, die sich weiter entfernt vom Feld befinden.

Material und Methoden

Mit einem validierten Bestrahlungsplanungssystem mit Monte-Carlo-Algorithmus wurden Organdosen berechnet für tangentiale, dreidimensionale konformale Strahlentherapie (3‑D‑CRT) und für intensitätsmodulierte Strahlentherapie (IMRT) mit Feldern aus vielen Richtungen. Mit Phantom-Messungen wurden systematisch die Verwendung von Keilfiltern und der Einfluss von inverser Planung untersucht. Zur Berechnung von Krebsrisiken wurden sowohl Risikokoeffizienten aus Studien zu Strahlentherapiepatienten als auch zu Atombombenüberlebenden verwendet.

Ergebnisse

Im 3‑D-CRT-Plan waren die mittleren Organdosen für weiter entfernte Organe als Lunge, Herz und kontralaterale Brust unterhalb von 1 Gy und fielen mit der Entfernung im Torso bis auf einige cGy ab. Die IMRT-Technik mit vielen Feldern führte zu deutlich höheren mittleren Dosen in allen Organen außerhalb des Zielvolumens – für viele Organe um mehr als 50 %. Ebenso erhöhten externe Keilfilter die Strahlenbelastung in entfernten Organen. Kein Unterschied konnte allerdings zwischen inverser und Vorwärtsplanung festgestellt werden. Trotz der geringeren Dosen trugen weiter entfernte Organe in der Summe ähnlich hoch zum Zweittumorrisiko bei wie die Lunge oder die kontralaterale Brust. Für die IMRT-Technik war dieser Beitrag um 75 % höher als für 3‑D-CRT ohne externe Keilfilter.

Schlussfolgerung

Bei der Abschätzung von Zweittumorrisiken sind auch entfernte Organe wichtig. Deren Exposition kann durch eine tangentiale Feldkonfiguration und mit einem Beschleunigeraufbau mit geringer Streustrahlung effektiv reduziert werden.

Schlüsselwörter

Brustkrebs Strahlenrisiko Periphere Dosis Risikomodelle IMRT 3D-CRT 

Notes

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF) under contract number 02NUK026 (PASSOS).

Compliance with ethical guidelines

Conflict of interest

C. Simonetto, H. Rennau, J. Remmele, S. Sebb, P. Kundrát, M. Eidemüller, U. Wolf and G. Hildebrandt declare that they have no competing interests.

Ethical standards

The study was approved by the ethics committee of the University Medicine Rostock (A 2014-0128).

Supplementary material

66_2018_1384_MOESM1_ESM.docx (3.4 mb)
Details of the dose and risk assesment, Monte Carlo validation, and inter-individual variation of doses

References

  1. 1.
    WHO (2018) Breast cancer: prevention and control. http://www.who.int/cancer/detection/breastcancer/en/index1.html. Accessed 9 July 2018Google Scholar
  2. 2.
    Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo e Silva G, Chen WQ, Ogunbiyi OJ, Rachet B, Soeberg MJ, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker TC, Coleman MP, Concord Working Group (2015) Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 385(9972):977–1010.  https://doi.org/10.1016/S0140-6736(14)62038-9 CrossRefGoogle Scholar
  3. 3.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y, Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106.  https://doi.org/10.1016/S0140-6736(05)67887-7 CrossRefGoogle Scholar
  4. 4.
    Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, Bergh J, Dodwell D, Ewertz M, Gray R, Jagsi R, Pierce L, Pritchard KI, Swain S, Wang Z, Wang Y, Whelan T, Peto R, McGale P, Early Breast Cancer Trialists’ Collaborative Group (2017) Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol 35(15):1641–1649.  https://doi.org/10.1200/JCO.2016.72.0722 CrossRefGoogle Scholar
  5. 5.
    PASSOS collaboration (2018) Personalised assessment of late health risks after exposure to ionising radiation and guidance for radiation applications in medicine. https://passos.helmholtz-muenchen.de. Accessed 9 July 2018Google Scholar
  6. 6.
    Wollschläger D, Karle H, Stockinger M, Bartkowiak D, Buhrdel S, Merzenich H, Wiegel T, Blettner M, Schmidberger H (2016) Radiation dose distribution in functional heart regions from tangential breast cancer radiotherapy. Radiother Oncol 119(1):65–70.  https://doi.org/10.1016/j.radonc.2016.01.020 CrossRefGoogle Scholar
  7. 7.
    Merzenich H, Bartkowiak D, Schmidberger H, Schmidt M, Schwentner L, Wiegel T, Woeckel A, Wollschlager D, Blettner M (2017) 3D conformal radiotherapy is not associated with the long-term cardiac mortality in breast cancer patients: a retrospective cohort study in Germany (PASSOS-Heart Study). Breast Cancer Res Treat 161(1):143–152.  https://doi.org/10.1007/s10549-016-4042-2 CrossRefGoogle Scholar
  8. 8.
    Wollschläger D, Karle H, Stockinger M, Bartkowiak D, Buhrdel S, Merzenich H, Wiegel T, Schmidberger H, Blettner M (2017) Predicting heart dose in breast cancer patients who received 3D conformal radiation therapy. Health Phys 112(1):1–10.  https://doi.org/10.1097/HP.0000000000000577 CrossRefGoogle Scholar
  9. 9.
    Wollschläger D, Merzenich H, Schwentner L, Janni W, Wiegel T, Bartkowiak D, Wockel A, Schmidt M, Schmidberger H, Blettner M (2017) Self-reported long-term cardiac morbidity in breast cancer patients: a retrospective cohort study in Germany (PASSOS Heart Study). Breast Cancer Res Treat 163(3):595–604.  https://doi.org/10.1007/s10549-017-4215-7 CrossRefGoogle Scholar
  10. 10.
    Donovan EM, James H, Bonora M, Yarnold JR, Evans PM (2012) Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer. Med Phys 39(10):5814–5824.  https://doi.org/10.1118/1.4748332 CrossRefGoogle Scholar
  11. 11.
    Joosten A, Matzinger O, Jeanneret-Sozzi W, Bochud F, Moeckli R (2013) Evaluation of organ-specific peripheral doses after 2‑dimensional, 3‑dimensional and hybrid intensity modulated radiation therapy for breast cancer based on Monte Carlo and convolution/superposition algorithms: Implications for secondary cancer risk assessment. Radiother Oncol 106(1):33–41.  https://doi.org/10.1016/j.radonc.2012.11.012 CrossRefGoogle Scholar
  12. 12.
    Lee B, Lee S, Sung J, Yoon M (2014) Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot 34(2):325–331.  https://doi.org/10.1088/0952-4746/34/2/325 CrossRefGoogle Scholar
  13. 13.
    Han EY, Paudel N, Sung J, Yoon M, Chung WK, Kim DW (2016) Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget 7(16):22960–22969.  https://doi.org/10.18632/oncotarget.8392 Google Scholar
  14. 14.
    Santos AMC, Marcu LG, Wong CM, Bezak E (2016) Risk estimation of second primary cancers after breast radiotherapy. Acta Oncol 55(11):1331–1337.  https://doi.org/10.1080/0284186x.2016.1185150 CrossRefGoogle Scholar
  15. 15.
    Joosten A, Bochud F, Moeckli R (2014) A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2‑dimensional, 3‑dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer. Phys Med Biol 59(16):4697–4722.  https://doi.org/10.1088/0031-9155/59/16/4697 CrossRefGoogle Scholar
  16. 16.
    NCD Risk Factor Collaboration (2016) A century of trends in adult human height. Elife 5:e13410.  https://doi.org/10.7554/eLife.13410 CrossRefGoogle Scholar
  17. 17.
    Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26(8):1466–1475.  https://doi.org/10.1118/1.598676 CrossRefGoogle Scholar
  18. 18.
    Fippel M, Haryanto F, Dohm O, Nusslin F, Kriesen S (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30(3):301–311.  https://doi.org/10.1118/1.1543152 CrossRefGoogle Scholar
  19. 19.
    Kriesen S, Fippel M (2005) Verification of the VEF photon beam model for dose calculations by the Voxel-Monte-Carlo-Algorithm. Z Med Phys 15(2):115–121CrossRefGoogle Scholar
  20. 20.
    Grantzau T, Thomsen MS, Vaeth M, Overgaard J (2014) Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol 111(3):366–373.  https://doi.org/10.1016/j.radonc.2014.05.004 CrossRefGoogle Scholar
  21. 21.
    Stovall M, Smith SA, Langholz BM, Boice JD Jr., Shore RE, Andersson M, Buchholz TA, Capanu M, Bernstein L, Lynch CF, Malone KE, Anton-Culver H, Haile RW, Rosenstein BS, Reiner AS, Thomas DC, Bernstein JL, Women’s Environmental Cancer and Radiation Epidemiology Study Collaborative Group (2008) Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys 72(4):1021–1030.  https://doi.org/10.1016/j.ijrobp.2008.02.040 CrossRefGoogle Scholar
  22. 22.
    Morton LM, Gilbert ES, Hall P, Andersson M, Joensuu H, Vaalavirta L, Dores GM, Stovall M, Holowaty EJ, Lynch CF, Curtis RE, Smith SA, Kleinerman RA, Kaijser M, Storm HH, Pukkala E, Weathers RE, Linet MS, Rajaraman P, Fraumeni JF Jr., Brown LM, van Leeuwen FE, Fossa SD, Johannesen TB, Langmark F, Lamart S, Travis LB, Aleman BM (2012) Risk of treatment-related esophageal cancer among breast cancer survivors. Ann Oncol 23(12):3081–3091.  https://doi.org/10.1093/annonc/mds144 CrossRefGoogle Scholar
  23. 23.
    Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64.  https://doi.org/10.1667/RR0763.1 CrossRefGoogle Scholar
  24. 24.
    Zentrum für Krebsregisterdaten (Robert Koch-Institut) (2014) Datenbankabfrage. http://www.krebsdaten.de/Krebs/DE/Datenbankabfrage/datenbankabfrage_stufe1_node.html. Accessed 26 Mar 2017Google Scholar
  25. 25.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403.  https://doi.org/10.1016/j.ejca.2012.12.027 CrossRefGoogle Scholar
  26. 26.
    Blettner M, Boice JD Jr. (1991) Radiation dose and leukaemia risk: general relative risk techniques for dose-response models in a matched case-control study. Stat Med 10(10):1511–1526CrossRefGoogle Scholar
  27. 27.
    Curtis RE, Boice JD Jr., Stovall M, Bernstein L, Holowaty E, Karjalainen S, Langmark F, Nasca PC, Schwartz AG, Schymura MJ et al (1994) Relationship of leukemia risk to radiation dose following cancer of the uterine corpus. J Natl Cancer Inst 86(17):1315–1324CrossRefGoogle Scholar
  28. 28.
    Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26(3):389–400CrossRefGoogle Scholar
  29. 29.
    Schneider U, Zwahlen D, Ross D, Kaser-Hotz B (2005) Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys 61(5):1510–1515.  https://doi.org/10.1016/j.ijrobp.2004.12.040 CrossRefGoogle Scholar
  30. 30.
    Aznar MC, Duane FK, Darby SC, Wang Z, Taylor CW (2018) Exposure of the lungs in breast cancer radiotherapy: a systematic review of lung doses published 2010–2015. Radiother Oncol 126(1):148–154.  https://doi.org/10.1016/j.radonc.2017.11.022 CrossRefGoogle Scholar
  31. 31.
    Joosten A, Bochud F, Baechler S, Levi F, Mirimanoff RO, Moeckli R (2011) Variability of a peripheral dose among various linac geometries for second cancer risk assessment. Phys Med Biol 56(16):5131–5151.  https://doi.org/10.1088/0031-9155/56/16/004 CrossRefGoogle Scholar
  32. 32.
    Berrington de Gonzalez A, Gilbert E, Curtis R, Inskip P, Kleinerman R, Morton L, Rajaraman P, Little MP (2013) Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol Biol Phys 86(2):224–233.  https://doi.org/10.1016/j.ijrobp.2012.09.001 CrossRefGoogle Scholar
  33. 33.
    Trott KR (2009) Second cancers after radiotherapy. In: Joiner MC, van der Kogel A (eds) Basic clinical radiobiology, 4th edn. CRC Press, Boca RatonGoogle Scholar
  34. 34.
    Sachs RK, Brenner DJ (2005) Solid tumor risks after high doses of ionizing radiation. Proc Natl Acad Sci USA 102(37):13040–13045.  https://doi.org/10.1073/pnas.0506648102 CrossRefGoogle Scholar
  35. 35.
    Schneider U, Kaser-Hotz B (2005) Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiat Environ Biophys 44(3):235–239.  https://doi.org/10.1007/s00411-005-0016-1 CrossRefGoogle Scholar
  36. 36.
    National Council on Radiation Protection and Measurements (2011) Second Primary Cancers and Cardiovascular Disease After Radiation Therapy.Google Scholar
  37. 37.
    Corradini S, Ballhausen H, Weingandt H, Freislederer P, Schonecker S, Niyazi M, Simonetto C, Eidemüller M, Ganswindt U, Belka C (2018) Left-sided breast cancer and risks of secondary lung cancer and ischemic heart disease : effects of modern radiotherapy techniques. Strahlenther Onkol 194(3):196–205.  https://doi.org/10.1007/s00066-017-1213-y CrossRefGoogle Scholar
  38. 38.
    Berrington de Gonzalez A, Curtis RE, Gilbert E, Berg CD, Smith SA, Stovall M, Ron E (2010) Second solid cancers after radiotherapy for breast cancer in SEER cancer registries. Br J Cancer 102(1):220–226.  https://doi.org/10.1038/sj.bjc.6605435 CrossRefGoogle Scholar
  39. 39.
    Rusner C, Wolf K, Bandemer-Greulich U, Engel J, Stegmaier C, Holleczek B, Schubert-Fritschle G, Tillack A, Stang A (2014) Risk of contralateral second primary breast cancer according to hormone receptor status in Germany. Breast Cancer Res 16(5).  https://doi.org/10.1186/s13058-014-0452-4 Google Scholar
  40. 40.
    Cuzick J, Sestak I, Pinder SE, Ellis IO, Forsyth S, Bundred NJ, Forbes JF, Bishop H, Fentiman IS, George WD (2011) Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol 12(1):21–29.  https://doi.org/10.1016/S1470-2045(10)70266-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Radiation ProtectionHelmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)NeuherbergGermany
  2. 2.Klinik und Poliklinik für Strahlentherapie, MVZ der Universitätsmedizin Rostock am Standort Südstadt gGmbHUniversitätsmedizin RostockRostockGermany
  3. 3.Klinik für StrahlentherapieUniversität LeipzigLeipzigGermany

Personalised recommendations