Strahlentherapie und Onkologie

, Volume 194, Issue 12, pp 1132–1143 | Cite as

Radiosurgery of vestibular schwannoma: prognostic factors for hearing outcome using 3D-constructive interference in steady state (3D-CISS)

  • Franca WagnerEmail author
  • Matteo Gandalini
  • Arsany Hakim
  • Ekin Ermis
  • Dominic Leiser
  • Martin Zbinden
  • Lukas Anschuetz
  • Andreas Raabe
  • Marco Caversaccio
  • Roland Wiest
  • Evelyn Herrmann
Original Article



Stereotactic radiosurgery (SRS) is an effective treatment for vestibular schwannoma (VS). Three-dimensional (3D) constructive interference in steady state (CISS) is the preferred magnetic resonance imaging (MRI) sequence for evaluating signal changes in the inner ear endolymph. Previous studies demonstrated a correlation between pretreatment cochlear signal intensity in 3D-CISS and posttherapeutic hearing outcomes. The purpose of our study was to compare 3D-CISS sequences before and after primary SRS of unilateral VSs to evaluate the effect of radiosurgery on the 3D-CISS signal intensities of cochlea and sacculus/utriculus.


We retrospectively reviewed 47 patients with unilateral VS treated with SRS. The neuroradiological MRI datasets were analysed to evaluate the signal intensity of the inner ear structure, tumour size, Koos grade, tumour volume, and infiltration of the cochlear aperture before therapy and at follow-up. The differences in these signal intensities before SRS and at follow-up were correlated with clinical symptoms, cochlear radiation dose, tumour volume and infiltration of the cochlear aperture.


No differences were found between signal intensities in cochlea and utriculus/sacculus before and after SRS and no correlation with clinical symptoms, cochlear radiation dose, tumour volume, Koos grade or infiltration of the cochlear aperture (all p > 0.05).


Our study supports the theory of a complex interaction causing alteration of the endolymph protein concentration and not a direct dependency on the SRS. Use of modern dosing schemes will have a positive impact on clinical outcome with preservation of hearing in patients with VS.


3D-CISS Labyrinth signal loss Magnetic resonance imaging Vestibular schwannoma Radiosurgery 



Three-dimensional constructive interference in steady state


Cerebellopontine angle


Cerebrospinal fluid




Fluid-attenuated inversion recovery


Field of view




Internal auditory canal


Large vestibular aqueduct syndrome


Multiplanar reconstruction


Pure-tone audiometry


Stereotactic radiosurgery


Slice thickness


Echo time


Repetition time


Vestibular schwannoma

Radiochirurgie bei Vestibularisschwannom: Prognostische Faktoren für das Hörvermögen bei Akquisition der 3D-CISS



Stereotaktische Radiochirurgie („stereotactic radiosurgery“, SRS) ist effektiv zur Behandlung des Vestibularisschwannoms (VS). Die 3‑D-CISS-Sequenz („constructive interference in steady state“) ist die Sequenz der Wahl bei der Magnetresonanztomographie (MRT) zur Auswertung von Signalveränderungen der Endolymphe des Innenohrs. Frühere Studien zeigten eine Korrelation zwischen der Signalintensität der Cochlea in der 3‑D-CISS vor Strahlentherapie und dem Hörvermögen nach Bestrahlung. Ziel der vorliegenden Studie war der Vergleich der Signalintensität von Cochlea sowie Sacculus/Utriculus in der 3‑D-CISS-Sequenz vor und nach primärer SRS.


Retrospektiv wurden 47 Patienten mit einseitigem VS und SRS-Therapie untersucht. Eine neuroradiologische Analyse der initialen und Verlaufs-MRT mit 3‑D-CISS erfolgte, um die Signalintensität des Innenohrs, Tumorgröße, den Koos-Grad, das Tumorvolumen und die Infiltration der Cochlea-Apertur vor SRS und im Verlauf zu evaluieren. Die Unterschiede der Signalintensität vor SRS und bei der Nachuntersuchung wurden mit den klinischen Symptomen, der applizierten Strahlendosis an der Cochlea, dem Tumorvolumen und der Infiltration der Apertura cochlearis korreliert.


Es wurden weder Unterschiede zwischen der Signalintensität in Cochlea und Utriculus/Sacculus vor und nach SRS noch eine Korrelation mit klinischen Symptomen, cochleärer Strahlendosis, Tumorvolumen, Koos-Grad oder Infiltration der Cochlea-Apertur festgestellt (alle p > 0,05).


Die Studie stützt die Theorie einer komplexen Wechselwirkung, die zur Veränderung der Proteinkonzentration der Endolymphe führt, und nicht die direkte Abhängigkeit von der SRS. Diesen Daten zufolge hat die Anwendung moderner Dosierungsschemata einen positiven Einfluss auf das klinische Ergebnis mit Erhalt des Hörvermögens bei VS-Patienten.


3‑D-CISS Signalverlust Labyrinth Magnetresonanztomographie Vestibularisschwannom Radiochirurgie 


Compliance with ethical guidelines

Conflict of interest

F. Wagner, M. Gandalini, A. Hakim, E. Ermis, D. Leiser, M. Zbinden, L. Anschuetz, A. Raabe, M. Caversaccio, R. Wiest and E. Herrmann declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Coughlin AR, Willman TJ, Gubbels SP (2018) Systematic review of hearing preservation after radiotherapy for vestibular schwannoma. Otol Neurotol 39:273–283CrossRefGoogle Scholar
  2. 2.
    Selters WA, Brackmann DE (1977) Acoustic tumor detection with brain stem electric response audiometry. Arch Otolaryngol 103:181–187CrossRefGoogle Scholar
  3. 3.
    Grayeli AB, Refass A, Smail M, Elgarem H, Kalamarides M, Bouccara D, Sterkers O (2008) Diagnostic value of auditory brainstem responses in cerebellopontine angle tumours. Acta Otolaryngol 128:1096–1100CrossRefGoogle Scholar
  4. 4.
    Eckermeier L, Pirsig W, Mueller D (1979) Histopathology of 30 non-operated acoustic schwannomas. Arch Otorhinolaryngol 222:1–9CrossRefGoogle Scholar
  5. 5.
    Johnsson LG, Hawkins JE, Rouse RC (1984) Sensorineural and vascular changes in an ear with acoustic neurinoma. Am J Otolaryngol 5:49–59CrossRefGoogle Scholar
  6. 6.
    Benitez JT, Lopez-Rios G, Novoa V (1967) Bilateral acoustic neuroma. A human temporal bone report. Arch Otolaryngol 86:25–31CrossRefGoogle Scholar
  7. 7.
    Merchant SN, Nadol JB, Schuknecht HF (2010) Schuknecht’s pathology of the ear. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    De Moura LF (1967) Inner ear pathology in acoustic neurinoma. Arch Otolaryngol 85:125–133CrossRefGoogle Scholar
  9. 9.
    Mahmud MR, Khan AM, Nadol JB (2003) Histopathology of the inner ear in unoperated acoustic neuroma. Ann Otol Rhinol Laryngol 112:979–986CrossRefGoogle Scholar
  10. 10.
    Roosli C, Linthicum FH, Cureoglu S, Merchant SN (2012) Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol 33:473–480CrossRefGoogle Scholar
  11. 11.
    Silverstein H, Schuknecht HF (1966) Biochemical studies of inner ear fluid in man. Changes in otosclerosis, Meniere’s disease, and acoustic neuroma. Arch Otolaryngol 84:395–402CrossRefGoogle Scholar
  12. 12.
    Bhadelia RA, Tedesco KL, Hwang S, Erbay SH, Lee PH, Shao W, Heilman C (2008) Increased cochlear fluid-attenuated inversion recovery signal in patients with vestibular schwannoma. AJNR Am J Neuroradiol 29:720–723CrossRefGoogle Scholar
  13. 13.
    Miller ME, Mafee MF, Bykowski J, Alexander TH, Burchette RJ, Mastrodimos B, Cueva RA (2014) Hearing preservation and vestibular schwannoma: Intracochlear FLAIR signal relates to hearing level. Otol Neurotol 35:348–352CrossRefGoogle Scholar
  14. 14.
    Somers T, Casselman J, de Ceulaer G, Govaerts P, Offeciers E (2001) Prognostic value of magnetic resonance imaging findings in hearing preservation surgery for vestibular schwannoma. Otol Neurotol 22:87–94CrossRefGoogle Scholar
  15. 15.
    Prabhu V, Kondziolka D, Hill TC, Benjamin CG, Shinseki MS, Golfinos JG, Roland JT Jr, Fatterpekar GM (2018) Preserved cochlear CISS signal is a predictor for hearing preservation in patients treated for vestibular schwannoma with stereotactic radiosurgery. Otol Neurotol 39:628–631CrossRefGoogle Scholar
  16. 16.
    Wagner F, Herrmann E, Wiest R, Raabe A, Bernasconi C, Caversaccio M, Vibert D (2018) 3D-constructive interference into steady state (3D-CISS) labyrinth signal alteration in patients with vestibular schwannoma. Auris Nasus Larynx 45:702–710CrossRefGoogle Scholar
  17. 17.
    Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316–319PubMedGoogle Scholar
  18. 18.
    Germano IM, Sheehan J, Parish J, Atkins T, Asher A, Hadjipanayis CG, Burri SH, Green S, Olson JJ (2018) Congress of Neurological Surgeons systematic review and evidence-based guidelines on the role of radiosurgery and radiation therapy in the management of patients with vestibular schwannomas. Neurosurgery 82:E49–E51CrossRefGoogle Scholar
  19. 19.
    World Medical Association (2013) World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191CrossRefGoogle Scholar
  20. 20.
    World Health Organization (2014) Deafness prevention. World Health Organization, Geneva (available at: Scholar
  21. 21.
    Mathers C, Smith A, Concha M (2003) Global burden of hearing loss in the year 2000. World Health Organization, Geneva, pp 1–30Google Scholar
  22. 22.
    Von Gablenz P, Holube I (2015) Prävalenz von Schwerhörigkeit im Nordwesten Deutschlands: Ergebnisse einer epidemiologischen Untersuchung zum Hörstatus (HÖRSTAT). HNO 63:195–214CrossRefGoogle Scholar
  23. 23.
    Tsao MN, Sahgal A, Xu W, De Salles A, Hayashi M, Levivier M, Ma L et al (2017) Stereotactic radiosurgery for vestibular schwannoma: International Stereotactic Radiosurgery society (ISRS) Practice guideline. J Radiosurg SBRT 5:5–24PubMedPubMedCentralGoogle Scholar
  24. 24.
    Koos W, Spetzler R, Böck F (1976) Microsurgery of cerebellopontine angle tumors. In: Koos W, Spetzler R, Böck F (eds) Clinical microneurosurgery. Thieme, Stuttgart, pp 91–112Google Scholar
  25. 25.
    Valvassori GE, Clemis JD (1978) The large vestibular aqueduct syndrome. Laryngoscope 88:723–728CrossRefGoogle Scholar
  26. 26.
    Thomsen J, Saxtrup O, Tos M (1982) Quantitated determination of proteins in perilymph in patients with acoustic neuromas. ORL J Otorhinolaryngol Relat Spec 44:61–65CrossRefGoogle Scholar
  27. 27.
    Rasmussen N, Bendtzen K, Thomsen J, Tos M (1984) Antigenicity and protein content of perilymph in acoustic neuroma patients. Acta Otolaryngol 97:502–508CrossRefGoogle Scholar
  28. 28.
    Hızlı Ö, Cureoglu S, Kaya S, Schachern PA, Paparella MM, Adams ME (2016) Quantitative vestibular labyrinthine otopathology in temporal bones with vestibular schwannoma. Otolaryngol Head Neck Surg 154:150–156CrossRefGoogle Scholar
  29. 29.
    Kim H‑Y (2017) Statistical notes for clinical researchers: chi-squared test and Fisher’s exact test. Restor Dent Endod 42:152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Franca Wagner
    • 1
    Email author
  • Matteo Gandalini
    • 1
    • 2
  • Arsany Hakim
    • 1
  • Ekin Ermis
    • 3
  • Dominic Leiser
    • 3
  • Martin Zbinden
    • 1
  • Lukas Anschuetz
    • 4
  • Andreas Raabe
    • 5
  • Marco Caversaccio
    • 4
  • Roland Wiest
    • 1
  • Evelyn Herrmann
    • 3
  1. 1.Institute for Diagnostic and Interventional NeuroradiologyUniversity Hospital Bern and InselspitalBernSwitzerland
  2. 2.Departments of Radiology, Radiotherapie and Radiology PracticeKonstanzGermany
  3. 3.Departments of Radiation Oncology, InselspitalUniversity of BernBernSwitzerland
  4. 4.Departments of Otorhinolaryngology and Head and Neck Surgery, InselspitalUniversity of BernBernSwitzerland
  5. 5.Departments of Neurosurgery, InselspitalUniversity of BernBernSwitzerland

Personalised recommendations