Strahlentherapie und Onkologie

, Volume 194, Issue 10, pp 911–920 | Cite as

Radiation-induced acute toxicities after image-guided intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for patients with spinal metastases (IRON-1 trial)

First results of a randomized controlled trial
  • Tanja Sprave
  • Vivek Verma
  • Robert Förster
  • Ingmar Schlampp
  • Thomas Bruckner
  • Tilman Bostel
  • Stefan Ezechiel Welte
  • Eric Tonndorf-Martini
  • Rami El Shafie
  • Nils Henrik Nicolay
  • Jürgen Debus
  • Harald Rief
Original Article



Radiation therapy (RT) provides an important treatment approach in the palliative care of vertebral metastases, but radiation-induced toxicities in patients with advanced disease and low performance status can have substantial implications for quality of life. Herein, we prospectively compared toxicity profiles of intensity-modulated radiotherapy (IMRT) vs. conventional three-dimensional conformal radiotherapy (3DCRT).


This was a prospective randomized monocentric explorative pilot trial to compare radiation-induced toxicity between IMRT and 3DCRT for patients with spinal metastases. A total of 60 patients were randomized between November 2016 and May 2017. In both cohorts, RT was delivered in 10 fractions of 3 Gy each. The primary endpoint was radiation-induced toxicity at 3 months.


Median follow-up was 4.3 months. Two patients suffered from grade 3 acute toxicities in the IMRT arm, along with 1 patient in the 3DCRT group. At 12 weeks after treatment (t2), 1 patient reported grade 3 toxicity in the IMRT arm vs. 4 patients in the 3DCRT group. No grade 4 or 5 adverse events occurred in either group. In the IMRT arm, the most common side effects by the end of irradiation (t1) were grade 1–2 xerostomia and nausea in 8 patients each (29.6%), and dyspnea in 7 patients (25.9%). In the 3DCRT group, the most frequent adverse events (t1) were similar: grade 1–2 xerostomia (n = 10, 35.7%), esophagitis (n = 10, 35.8%), nausea (n = 10, 35.8%), and dyspnea (n = 5, 17.9%).


This is the first randomized trial to evaluate radiation-induced toxicities after IMRT versus 3DCRT in patients with vertebral metastases. This trial demonstrated an additional improvement for IMRT in terms of acute side effects, although longer follow-up is required to further ascertain other endpoints.


Spinal bone metastases Intensity-modulated radiotherapy Palliative radiotherapy Toxicity Side effects 



Bone survival


Computed tomography


Clinical target volume


3D conformal radiotherapy


Gross tumor volume


Intensity-modulated radiotherapy


Karnofsky performance status


Organ at risk


Overall survival


Planning target volume


Vertebral compression fracture

Radiogene Akuttoxizität nach bildgeführter intensitätsmodulierter Strahlentherapie versus dreidimensionaler konformaler Strahlentherapie bei Patienten mit Wirbelkörpermetastasen (IRON-1 trial)

Erste Ergebnisse einer randomisierten kontrollierten Studie



Die Radiotherapie (RT) stellt einen wichtigen Behandlungsansatz in der palliativen Versorgung von Wirbelkörpermetastasen dar. Das Ausmaß der strahleninduzierten Toxizität bei Patienten mit fortgeschrittener Tumorerkrankung und reduziertem Allgemeinzustand hat erhebliche Auswirkungen auf ihre Lebensqualität. Wir haben die Toxizitätsprofile der intensitätsmodulierten Radiotherapie (IMRT) und der konventionellen dreidimensionalen, konformalen Radiotherapie (3DCRT) hinsichtlich normaler Gewebetoxizitäten und klinisch messbarer Nebenwirkungen miteinander verglichen.


Es handelte sich um eine prospektive, randomisierte, monozentrische explorative Pilotstudie zur Evaluation der strahleninduzierten Toxizität zwischen IMRT und 3DCRT bei Patienten mit Wirbelkörpermetastasen. Insgesamt wurden vom November 2016 bis Mai 2017 60 Patienten randomisiert. Die RT wurde in 10 Fraktionen von 3 Gy appliziert. Der primäre Endpunkt war die strahleninduzierte Toxizität nach 3 Monaten.


Die mediane Nachbeobachtungszeit betrug 4,3 Monate. Im IMRT-Arm litten 2 Patienten an akuter Toxizität Grad 3 und in der 3DCRT-Gruppe 1 Patient. Zwölf Wochen (t2) nach der Behandlung berichtete 1 Patient über eine Grad-3-Toxizität im IMRT-Arm im Vergleich zu 4 Patienten in der 3DCRT-Gruppe. In keiner der beiden Gruppen traten unerwünschte Nebenwirkungen vom Grad 4 oder 5 auf. Im IMRT-Arm waren die häufigsten Nebenwirkungen am Ende der Bestrahlung (t1) Xerostomie Grad 1–2 und Nausea bei jeweils 8 Patienten (29,6%) sowie Dyspnoe bei 7 Patienten (25,9%). In der 3DCRT-Gruppe waren die häufigsten unerwünschten Ereignisse (t1) ähnlich: Xerostomie Grad 1–2 (n = 10; 35,7%), Ösophagitis (n = 10; 35,8%), Nausea (n = 10; 35,8%) und Dyspnoe (n = 5; 17,9%).


Dies ist die erste randomisierte Studie zur Bewertung strahleninduzierter Toxizität nach IMRT im Vergleich zur 3DCRT bei Patienten mit Wirbelkörpermetastasen. Diese Studie zeigte eine zusätzliche Verbesserung bei Anwendung der IMRT in der Palliativmedizin in Bezug auf reduzierte akute Toxizität, obwohl eine längere Nachbeobachtung erforderlich ist, um weitere Endpunkte zu ermitteln.


Spinale Knochenmetastasen Intensitätsmodulierte Radiotherapie Palliative Radiotherapie Toxizität Nebenwirkungen 



No funding.

Compliance with ethical guidelines

Conflict of interest

T. Sprave, V. Verma, R. Förster, I. Schlampp, T. Bruckner, T. Bostel, S.E. Welte, E. Tonndorf-Martini, R. El Shafie, N.H. Nicolay, J. Debus and H. Rief declare that they have no competing interests. The sponsors of the study had no role in study design, data analysis, data interpretation, and wording of the report.

Ethical standards

The study was approved by the Heidelberg Independent Ethics Committee (Nr. S‑238/2016).


  1. 1.
    Wong DA, Fornasier VL, MacNab I (1990) Spinal metastases: the obvious, the occult, and the impostors. Spine 15:1–4CrossRefGoogle Scholar
  2. 2.
    Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243–6249CrossRefGoogle Scholar
  3. 3.
    Harrington KD (1997) Orthopedic surgical management of skeletal complications of malignancy. Cancer 80:1614–1627CrossRefGoogle Scholar
  4. 4.
    Koswig S, Buchali A, Böhmer D, Schlenger L, Budach V (1999) Palliative radiotherapy of bone metastases. A retrospektive analyses of 176 patients. Strahlenther Onkol 174:509–514CrossRefGoogle Scholar
  5. 5.
    Kougioumtzopoulou A, Zygogianni A, Liakouli Z, Kypraiou E, Kouloulias V (2017) The role of radiotherapy in bone metastases: a critical review of current literature. Eur J Cancer Care (Engl). CrossRefGoogle Scholar
  6. 6.
    Lutz S, Berk L, Chang E et al (2011) Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 79:965–976CrossRefGoogle Scholar
  7. 7.
    van Oorschot B, Rades D, Schulze W, Beckmann G, Feyer P (2011) Palliative radiotherapy—new approaches. Semin Oncol 38:443–449CrossRefGoogle Scholar
  8. 8.
    Wu JS, Wong RK, Lloyd NS, Johnston M, Bezjak A, Whelan T, Supportive Care Guidelines Group of Cancer Care O (2004) Radiotherapy fractionation for the palliation of uncomplicated painful bone metastases—an evidence-based practice guideline. BMC Cancer 4:71CrossRefGoogle Scholar
  9. 9.
    Bone Pain Trial Working Party (1999) 8 gy single fraction radiotherapy for the treatment of metastatic skeletal pain: randomised comparison with a multifraction schedule over 12 months of patient follow-up. Radiother Oncol 52:111–121CrossRefGoogle Scholar
  10. 10.
    Chow E, Harris K, Fan G, Tsao M, Sze WM (2007) Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 25:1423–1436CrossRefGoogle Scholar
  11. 11.
    Chow E, Hoskin P, Mitera G et al (2012) Update of the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases. Int J Radiat Oncol Biol Phys 82:1730–1737CrossRefGoogle Scholar
  12. 12.
    Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S (2012) Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 24:112–124CrossRefGoogle Scholar
  13. 13.
    De Bari B, Chiesa S, Filippi AR et al (2011) The INTER-ROMA project—a survey among Italian radiation oncologists on their approach to the treatment of bone metastases. Tumori 97:177–184CrossRefGoogle Scholar
  14. 14.
    Gutierrez Bayard L, Salas Buzon Mdel C, Angulo Pain E, de Ingunza Baron L (2014) Radiation therapy for the management of painful bone metastases: results from a randomized trial. Rep Pract Oncol Radiother 19:405–411CrossRefGoogle Scholar
  15. 15.
    Wortel RC, Incrocci L, Pos FJ et al (2015) Acute toxicity after image-guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 91:737–744CrossRefGoogle Scholar
  16. 16.
    Yang B, Zhu L, Cheng H, Li Q, Zhang Y, Zhao Y (2012) Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis. Radiat Oncol 7:197CrossRefGoogle Scholar
  17. 17.
    Ghosh G, Tallari R, Malviya A (2016) Toxicity profile of IMRT vs. 3D-CRT in head and neck cancer: a retrospective study. J Clin Diagn Res 10:Xc1–Xc3PubMedPubMedCentralGoogle Scholar
  18. 18.
    Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890CrossRefGoogle Scholar
  19. 19.
    Sujenthiran A, Nossiter J, Charman SC et al (2017) National population-based study comparing treatment-related toxicity in men who received intensity modulated versus 3‑dimensional conformal radical radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 99:1253–1260CrossRefGoogle Scholar
  20. 20.
    Naik A, Gurjar OP, Gupta KL, Singh K, Nag P, Bhandari V (2016) Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: a randomized prospective study. Cancer Radiother 20:370–376CrossRefGoogle Scholar
  21. 21.
    van Beek KM, Kaanders JH, Janssens GO, Takes RP, Span PN, Verhoef CG (2016) Effectiveness and toxicity of hypofractionated high-dose intensity-modulated radiotherapy versus 2‑ and 3‑dimensional radiotherapy in incurable head and neck cancer. Head Neck 38:E1264–E1270CrossRefGoogle Scholar
  22. 22.
    Vergeer MR, Doornaert PA, Rietveld DH, Leemans CR, Slotman BJ, Langendijk JA (2009) Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program. Int J Radiat Oncol Biol Phys 74:1–8CrossRefGoogle Scholar
  23. 23.
    Landry JC, Yang GY, Ting JY et al (2002) Treatment of pancreatic cancer tumors with intensity-modulated radiation therapy (IMRT) using the volume at risk approach (VARA): employing dose-volume histogram (DVH) and normal tissue complication probability (NTCP) to evaluate small bowel toxicity. Med Dosim 27:121–129CrossRefGoogle Scholar
  24. 24.
    Guckenberger M, Meyer J, Baier K, Vordermark D, Flentje M (2006) Distinct effects of rectum delineation methods in 3D-conformal vs. IMRT treatment planning of prostate cancer. Radiat Oncol 1:34CrossRefGoogle Scholar
  25. 25.
    Rief H, Habermehl D, Schubert K, Debus J, Combs SE (2014) Time evaluation of image-guided radiotherapy in patients with spinal bone metastases. A single-center study. Strahlenther Onkol 190:287–292CrossRefGoogle Scholar
  26. 26.
    Poelaert F, Fonteyne V, Ost E et al (2017) Whole pelvis radiotherapy for pathological node-positive prostata cancer: oncological outcome and prognostic factors. Strahlenther Onkol 193:444–451CrossRefGoogle Scholar
  27. 27.
    Ursino S, D’Angelo E, Mazzola R et al (2017) A comparison of swallowing dysfunction after three dimensional conformal and intensity-modulated radiotherapy: a systematic review by the Italian Head and Neck Radiotherapy Study Group. Strahlenther Onkol 193:877–889CrossRefGoogle Scholar
  28. 28.
    Meyerhof E, Sprave T, Welte SE et al (2017) Radiation-induced toxicity after image-guided and intensity-modulated radiotherapy versus external beam radiotherapy for patients with spinal bone metastases (IRON-1): a study protocol for a randomized controlled pilot trial. Trials 18:98CrossRefGoogle Scholar
  29. 29.
    Ng SY, Colborn KL, Cambridge L et al (2016) Acute toxicity with intensity modulated radiotherapy versus 3‑dimensional conformal radiotherapy during preoperative chemoradiation for locally advanced rectal cancer. Radiother Oncol 121:252–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tanja Sprave
    • 1
    • 3
  • Vivek Verma
    • 2
  • Robert Förster
    • 1
    • 3
    • 4
  • Ingmar Schlampp
    • 1
    • 3
  • Thomas Bruckner
    • 5
  • Tilman Bostel
    • 1
  • Stefan Ezechiel Welte
    • 1
  • Eric Tonndorf-Martini
    • 1
  • Rami El Shafie
    • 1
  • Nils Henrik Nicolay
    • 1
    • 3
    • 6
  • Jürgen Debus
    • 1
    • 3
  • Harald Rief
    • 1
    • 3
  1. 1.Department of Radiation OncologyUniversity Hospital of HeidelbergHeidelbergGermany
  2. 2.Department of Radiation OncologyAllegheny General HospitalPittsburghUSA
  3. 3.Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
  4. 4.Department of Radiation OncologyUniversity Hospital ZurichZurichSwitzerland
  5. 5.Department of Medical BiometryUniversity Hospital of HeidelbergHeidelbergGermany
  6. 6.German Cancer Research Center (DKFZ)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany

Personalised recommendations