Advertisement

Strahlentherapie und Onkologie

, Volume 194, Issue 9, pp 855–860 | Cite as

An offline technique to evaluate residual motion of the diaphragm during deep inspiratory breath-hold from cone-beam CT datasets

  • Manuel BlessingEmail author
  • Julian Hofmann
  • Lena Vogel
  • Judit Boda-Heggemann
  • Frank Lohr
  • Frederik Wenz
  • Florian Stieler
  • Anna Simeonova-Chergou
Short Communication

Abstract

Purpose

In radiation therapy, the computer-assisted deep inspiration breath-hold (DIBH) technique is one approach to deal with respiratory motion of tumors in the lung, liver, or upper abdomen. However, inter- and intra-breath-hold deviations from an optimal static tumor position might occur. A novel method is presented to noninvasively measure the diaphragm position and thus estimate its residual deviation (as surrogate for the tumor position) based on cone-beam computed tomography (CBCT) projection data using active breathing control during acquisition.

Methods

The diaphragm dome (DD) position relative to the isocenter of a linear accelerator is known from the static (DIBH) planning CT. A ball-bearing phantom (BB) is placed at this position, a CBCT dataset is acquired, and in each projection the position of the projected BB is determined automatically based on thresholding. The position of the DD is determined manually in CBCT projections of a patient. The distance between DD and BB (ideal static setting) in craniocaudal direction is calculated for a given angle based on the distance in the projection plane and the relative position of the BB referring to the source and the detector. An angle-dependent correction factor is introduced which takes this geometrical setting into account. The accuracy of the method is assessed.

Results

The method allows a CBCT projection-based estimation of the deviation between the DD and its optimal position as defined in the planning CT, i.e., the residual motion of the DD can be assessed. The error of this estimation is 2.2 mm in craniocaudal direction.

Conclusions

The developed method allows an offline estimation of the inspiration depth (inter- and intra-breath-hold) over time. It will be useful as a reference for comparison to other methods of residual motion estimation, e.g., surface scanning.

Keywords

Cone-beam computed tomography Patient positioning Deep inspiration breath-hold Active breathing control Residual motion 

Offline-Methode zur Evaluierung von Restbewegung des Diaphragmas unter inspiratorischem Atemanhalt von Cone-Beam-CT-Datensätzen

Zusammenfassung

Zielsetzung

In der Strahlentherapie bietet die Technik des computergestützten inspiratorischen Atemanhalts („deep-inspiratory-breath-hold“, DIBH) einen Ansatz, um mit atmungsbedingter Bewegung von Lunge, Leber oder oberem Bauchraum umzugehen. Dennoch können Abweichungen von der optimalen statischen Tumorposition vorkommen („inter-“ und „intra-breath-hold“). Eine neue nichtinvasive Methode wird vorgestellt, um die Zwerchfellposition und damit dessen Restbewegung (als Surrogat der Tumorposition) auf Basis von Cone-beam-Computertomographie(CBCT)-Projektionen, die unter aktiver Atemkontrolle aufgenommen wurden, zu bestimmen.

Methoden

Die Position der Zwerchfellkuppel („diaphragm dome“, DD) relativ zum Isozentrum eines Linearbeschleunigers ist aus dem statischen (DIBH) Planungs-CT bekannt. Ein Ball-Bearing-Phantom (BB) wird an dieser Stelle platziert, ein CBCT-Datensatz aufgenommen und in jeder Projektion die projizierte BB-Position automatisch per Schwellwert bestimmt. Die DD-Position wird manuell in den CBCT-Projektionen bestimmt. Der Abstand zwischen DD und BB (ideale statische Situation) in kraniokaudaler Richtung wird für einen gegebenen Winkel auf Basis des Abstands in der Projektionsebene und der relativen Position des BB bezüglich der Quelle und des Detektors berechnet. Ein winkelabhängiger Korrekturfaktor wird eingebracht, der dieses geometrische Setting berücksichtigt. Die Genauigkeit der Methode wird untersucht.

Ergebnisse

Die Methode erlaubt eine Einschätzung der Abweichung zwischen DD und dessen optimaler Position auf Basis von CBCT-Projektionen; die DD-Restbewegung kann also abgeschätzt werden. Der Fehler dieser Schätzung liegt bei 2,2 mm in kraniokaudaler Richtung.

Schlussfolgerung

Die entwickelte Methode ermöglicht eine Offline-Schätzung der Restbewegung unter DIBH („inter-“ und „intra-breath-hold“) und kann beim Vergleich mit anderen Methoden zur Schätzung der Bewegung (z. B. Oberflächenscan) als Referenz verwendet werden.

Schlüsselwörter

Cone-Beam-Computertomographie Patientenpositionierung Inspiratorischer Atemanhalt Aktive Atemkontrolle Restbewegung 

Notes

Conflict of interest

M. Blessing reports grants from German Government outside the submitted work. J. Boda-Heggemann reports personal fees from Elekta AB during the conduct of the study. F. Lohr reports grants and personal fees from Elekta AB, grants and personal fees from IBA, personal fees from C‑RAD during the conduct of the study. F. Wenz reports grants and non-financial support from Elekta during the conduct of the study; and grants, personal fees, and non-financial support from Carl Zeiss Meditec, grants and non-financial support from Nucletron, personal fees from Celgene, personal fees from Ipsen outside the submitted work. F. Stieler reports personal fees from Elekta AB during the conduct of the study. J. Hofmann, L. Vogel, and A. Simeonova-Chergou declare that they have no competing interests.

References

  1. 1.
    Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834.  https://doi.org/10.1016/S0360-3016(02)02803-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold—based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94(3):478–492.  https://doi.org/10.1016/j.ijrobp.2015.11.049 CrossRefPubMedGoogle Scholar
  3. 3.
    Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900.  https://doi.org/10.1118/1.2349696 CrossRefPubMedGoogle Scholar
  4. 4.
    McClelland JR, Hawkes DJ, Schaeffter T, King AP (2013) Respiratory motion models: a review. Med Image Anal 17(1):19–42.  https://doi.org/10.1016/j.media.2012.09.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Guckenberger M, Richter A, Boda-Heggemann J, Lohr F (2012) Motion compensation in radiotherapy. Crit Rev Biomed Eng 40(3):187–197.  https://doi.org/10.1615/CritRevBiomedEng.v40.i3.30 CrossRefPubMedGoogle Scholar
  6. 6.
    Korreman SS (2012) Motion in radiotherapy: photon therapy. Phys Med Biol 57(23):R161–R191.  https://doi.org/10.1088/0031-9155/57/23/R161 CrossRefPubMedGoogle Scholar
  7. 7.
    Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919.  https://doi.org/10.1016/S0360-3016(99)00056-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Boda-Heggemann J, Lohr F, Wertz H et al (2010) Repeat ABC-breath hold imaging with cone-beam CT. Int J Radiat Oncol Biol Phys 78(3):736.  https://doi.org/10.1016/j.ijrobp.2010.07.1705 CrossRefGoogle Scholar
  9. 9.
    Lee HY, Chang JS, Lee IJ, Park K, Kim YB, Suh CO (2013) The deep inspiration breath hold technique using Abches reduces cardiac dose in patients undergoing left-sided breast irradiation. Radiat Oncol 31(4):239–246.  https://doi.org/10.3857/roj.2013.31.4.239 CrossRefGoogle Scholar
  10. 10.
    Ottosson W, Rahma F, Sjöström D, Behrens CF, Sibolt P (2016) The advantage of deep-inspiration breath-hold and cone-beam CT based soft-tissue registration for locally advanced lung cancer radiotherapy. Radiother Oncol 119(3):432–437.  https://doi.org/10.1016/j.radonc.2016.03.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Partridge M, Tree A, Brock J et al (2009) Improvement in tumour control probability with active breathing control and dose escalation: a modelling study. Radiother Oncol 91(3):325–329.  https://doi.org/10.1016/j.radonc.2009.03.017 CrossRefPubMedGoogle Scholar
  12. 12.
    Boda-Heggemann J, Lohr F, Wenz F, Flentje M, Guckenberger M (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291.  https://doi.org/10.1007/s00066-011-2236-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Koshani R, Balter JM, Hayman JA, Henning GT, van Herk M (2006) Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). Int J Radiat Oncol Biol Phys 65(5):1553–1559.  https://doi.org/10.1016/j.ijrobp.2006.04.027 CrossRefPubMedGoogle Scholar
  14. 14.
    Dawson LA, Brock KK, Kazanjian S et al (2001) The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys 51(5):1410–1421.  https://doi.org/10.1016/S0360-3016(01)02653-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Lu L, Diaconu C, Djemil T et al (2017) Intra- and inter-fractional liver and lung tumor motions treated with SBRT under active breathing control. J Appl Clin Med Phys 9:1–7.  https://doi.org/10.1002/acm2.12220 CrossRefGoogle Scholar
  16. 16.
    Scherman Rydhög J, Riisgaard S, Blanck D et al (2017) Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer. Radiother Oncol 123:78–84.  https://doi.org/10.1016/j.radonc.2017.02.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Boda-Heggeman J, Jahnke A, Jahnke L et al (2014) Breath-hold cone beam CT (CBCT): improved image quality with “stop-and-go” breath hold-only acquisition versus repetitive breath hold during continuous rotation. Int J Radiat Oncol Biol Phys 90(1):826CrossRefGoogle Scholar
  18. 18.
    Boda-Heggemann J, Frauenfeld A, Weiss C et al (2014) Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases. Radiat Oncol 9(10):1–9.  https://doi.org/10.1186/1748-717X-9-10 CrossRefGoogle Scholar
  19. 19.
    Bissonnette J, Moseley D, White E (2008) Quality assurance for the geometric accuracy of cone-beam CT guidance in radiation therapy. Int J Radiat Oncol Biol Phys 71(1):57–61.  https://doi.org/10.1016/j.ijrobp.2007.06.086 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyMannheim Medical Center, University of HeidelbergMannheimGermany
  2. 2.Struttura Complessa di Radioterapia, Dipartimento die OncologiaAz. Ospedaliero-Universitaria di ModenaModenaItaly

Personalised recommendations