Strahlentherapie und Onkologie

, Volume 194, Issue 5, pp 375–385 | Cite as

A randomized phase III study between sequential versus simultaneous integrated boost intensity-modulated radiation therapy in nasopharyngeal carcinoma

  • Chawalit LertbutsayanukulEmail author
  • Anussara Prayongrat
  • Danita Kannarunimit
  • Chakkapong Chakkabat
  • Buntipa Netsawang
  • Sarin Kitpanit
Original Article



This study was performed to compare the acute and late toxicities between sequential (SEQ) and simultaneous integrated boost (SIB) intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC).

Materials and methods

Stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT. SEQ-IMRT consisted of two plans: 2 Gy × 25 fractions to low-risk planning target volume (PTV) followed by a sequential boost (2 Gy × 10 fractions) to high-risk PTV, while SIB-IMRT treated low- and high-risk PTVs with doses of 56 and 70 Gy in 33 fractions. Toxicities and survival outcomes were analyzed.


Between October 2010 and September 2015, of the 209 patients who completed treatment, 102 in the SEQ and 107 in the SIB arm were analyzed. The majority had undifferentiated squamous cell carcinoma (82%). Mucositis and dysphagia were the most common grade 3–5 acute toxicities. There were no statistically significant differences in the cumulative incidence of grade 3–4 acute toxicities between the two arms (59.8% in SEQ vs. 58.9% in SIB; P = 0.892). Common grade 3–4 late toxicities for SEQ and SIB included hearing loss (2.9 vs. 8.4%), temporal lobe injury (2.9 vs. 0.9%), cranial nerve injury (0 vs. 2.8%), and xerostomia (2 vs. 0.9%). With the median follow-up of 41 months, 3‑year progression-free and overall survival rates were 72.7 vs. 73.4% (P = 0.488) and 86.3 vs. 83.6% (P = 0.938), respectively.


SEQ and SIB provide excellent survival outcomes with few late toxicities. According to our study, SIB with a satisfactory dose–volume constraint to nearby critical organs is the technique of choice for NPC treatment due to its convenience.


IMRT with simultaneous integrated boost IMRT with sequential boost Nasopharyngeal carcinoma Survival Toxicities 



two-dimensional RT




American Joint Committee on Cancer


conventional radiation therapy


computed tomography


Common Terminology Criteria for Adverse Events


distant metastasis-free survival


maximum dose


deoxyribonucleic acid


dose to 1 cc


median dose


Epstein–Barr virus


intensity-modulated radiation therapy


local progression-free survival


magnetic resonance imaging


nasopharyngeal carcinoma


overall survival


positron-emission tomography


low-risk planning target volume


high-risk planning target volume


progression-free survival


Response Evaluation Criteria in Solid Tumors


regional progression-free survival


Radiation Therapy Oncology Group


sequential intensity-modulated radiation therapy


simultaneous integrated boost intensity-modulated radiation therapy


Statistical Packages for Social Sciences


temporal lobe injury


World Health Organization

Eine randomisierte Phase-III-Studie für den Vergleich zwischen intensitätsmodulierter Strahlentherapie mit sequenziell oder mit simultan integriertem Boost bei Nasopharynxkarzinom



Diese Studie wurde durchgeführt, um die akuten und späten Toxizitäten zwischen intensitätsmodulierter Strahlentherapie (IMRT) mit sequenziell (SEQ) und simultan integriertem Boost (SIB) bei Nasopharynxkarzinom (NPK) zu vergleichen.

Methoden und Material

Patienten mit NPK im Stadium I–IV B wurden randomisiert einer SEQ-IMRT- oder SIB-IMRT-Therapie zugewiesen. Die SEQ-IMRT-Therapie bestand aus 2 Plänen: 2 Gy × 25 Fraktionen für das Planungszielvolumen (PZV) mit geringem Risiko, gefolgt von einem sequenziellen Boost (2 Gy × 10 Fraktionen) für das Hochrisiko-PZV, während PZV mit geringem und hohem Risiko mit SIB-IMRT mit Dosen von 56 und 70 Gy in 33 Fraktionen behandelt wurden. Es wurden Toxizitäten und Überlebensergebnisse analysiert.


Zwischen Oktober 2010 und September 2015 wurden von den 209 Patienten, die die Behandlung abschlossen, 102 im SEQ- und 107 im SIB-Arm analysiert. Die Mehrzahl der Patienten (82 %) wies ein undifferenziertes Plattenepithelkarzinom auf. Mukositis und Dysphagie waren die am häufigsten vorkommenden akuten Toxizitäten der Grade 3–5. Es gab keine statistisch signifikanten Unterschiede bei der kumulativen Inzidenz akuter Toxizitäten der Grade 3–4 zwischen den beiden Armen (59,8 % im SEQ- vs. 58,9 % im SIB-Arm; P = 0,892). Häufig auftretende Toxizitäten der Grade 3–4 für SEQ bzw. SIB umfassten Hörverlust (2,9 % bzw. 8,4 %), Temporallappenverletzung (2,9 % bzw. 0,9 %), Hirnnervenverletzung (0 % bzw. 2,8 %) und Xerostomie (2 % bzw. 0,9 %). Bei der Nachbeobachtung mit einer medianen Länge von 41 Monaten betrugen die Raten für 3 Jahre Progressionsfreiheit und die Gesamtüberlebensraten 72,7 % versus 73,4 % (P = 0,488) bzw. 86,3 % versus 83,6 % (P = 0,938).


SEQ und SIB bieten hervorragende Überlebensergebnisse mit nur wenigen späten Toxizitäten. Laut unserer Studie ist SIB mit einer zufriedenstellenden Dosis-Volumen-Beschränkung für nahegelegene kritische Organe aufgrund seiner Annehmlichkeit die Technik der Wahl für die NPK-Behandlung.


IMRT mit simultan integriertem Boost IMRT mit sequenziellem Boost Nasopharynxkarzinom Überleben Toxizitäten 



This research article is made possible through the help and support from significant advisors and industrious colleges. Thank you for Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society for providing the resources and funding for quantitative measurement of plasma EBV DNA level.


Grant no. RA 8/54, Ratchadapisek Sompoch Endowment Fund, Chulalongkorn University

Compliance with ethical guidelines

Conflict of interest

C. Lertbutsayanukul, A. Prayongrat, D. Kannarunimit, C. Chakkabat, B. Netsawang, and S. Kitpanit declare that they have no competing interests.

Ethical standards

This study was approved by the institutional review board. Informed consent was obtained from every patient before entry into the study.

All participants gave their written consent.


  1. 1.
    Imsamran W, Chaiwerawattana A, Wiangnon S, et al (2015) Cancer in Thailand: Vol. VIII, 2010–2012. National Cancer Institute, ThailandGoogle Scholar
  2. 2.
    Eisbruch A, Ten Haken RK, Kim HM et al (1999) Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 45:577–587CrossRefPubMedGoogle Scholar
  3. 3.
    Xia P, Fu KK, Wong GW et al (2000) Comparison of treatment plans involving intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 48:329–337CrossRefPubMedGoogle Scholar
  4. 4.
    Hunt MA, Zelefsky MJ, Wolden S et al (2001) Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer. Int J Radiat Oncol Biol Phys 49:623–632CrossRefPubMedGoogle Scholar
  5. 5.
    Kam MK, Leung SF, Zee B et al (2007) Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J Clin Oncol 25:4873–4879CrossRefPubMedGoogle Scholar
  6. 6.
    Pow EH, Kwong DL, McMillan AS et al (2006) Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 66:981–991CrossRefPubMedGoogle Scholar
  7. 7.
    Peng G, Wang T, Yang KY et al (2012) A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol 104:286–293CrossRefPubMedGoogle Scholar
  8. 8.
    Lertbutsayanukul C, Khorprasert C, Shotelersuk K, et al (2006) Intensity-modulated radiation therapy in head-and-neck cancer, first report in Thailand. J Med Assoc Thai 89:2068–2076PubMedGoogle Scholar
  9. 9.
    Songthong A, Chakkabat C, Kannarunimit D, et al (2015) Efficacy of intensity-modulated radiotherapy with concurrent carboplatin in nasopharyngeal carcinoma. Radiol Oncol 49:155–162CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee N, Harris J, Garden AS et al (2009) Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol 27:3684–3690CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang R, Wu F, Lu H et al (2013) Definitive intensity-modulated radiation therapy for nasopharyngeal carcinoma: long-term outcome of a multicenter prospective study. J Cancer Res Clin Oncol 139:139–145CrossRefPubMedGoogle Scholar
  12. 12.
    Butler EB, Teh BS, Grant WH et al (1999) Smart (simultaneous modulated accelerated radiation therapy) boost: a new accelerated fractionation schedule for the treatment of head and neck cancer with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 45:21–32CrossRefPubMedGoogle Scholar
  13. 13.
    Chen SW, Yang SN, Liang JA et al (2005) Comparative dosimetric study of two strategies of intensity-modulated radiotherapy in nasopharyngeal cancer. Med Dosim 30:219–227CrossRefPubMedGoogle Scholar
  14. 14.
    Dogan N, King S, Emami B et al (2003) Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing. Int J Radiat Oncol Biol Phys 57:1480–1491CrossRefPubMedGoogle Scholar
  15. 15.
    Wong FC, Ng AW, Lee VH et al (2010) Whole-field simultaneous integrated-boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 76:138–145CrossRefPubMedGoogle Scholar
  16. 16.
    Wolden SL, Chen WC, Pfister DG et al (2006) Intensity-modulated radiation therapy (IMRT) for nasopharynx cancer: update of the Memorial Sloan-Kettering experience. Int J Radiat Oncol Biol Phys 64:57–62CrossRefPubMedGoogle Scholar
  17. 17.
    Sun X, Su S, Chen C et al (2014) Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities. Radiother Oncol 110:398–403CrossRefPubMedGoogle Scholar
  18. 18.
    Tao H, Wei Y, Huang W et al (2016) Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma. Onco Targets Ther 9:1865–1873CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Songthong AP, Kannarunimit D, Chakkabat C, et al (2015) A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events. Radiat Oncol 10:166CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zheng Y, Han F, Xiao W et al (2015) Analysis of late toxicity in nasopharyngeal carcinoma patients treated with intensity modulated radiation therapy. Radiat Oncol 10:17CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tang JM, Ma XM, Hou YL et al (2014) Analysis of simultaneous modulated accelerated radiotherapy (SMART) for nasopharyngeal carcinomas. J Radiat Res 55:794–802CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vlacich G, Stavas MJ, Pendyala P et al (2017) A comparative analysis between sequential boost and integrated boost intensity-modulated radiation therapy with concurrent chemotherapy for locally-advanced head and neck cancer. Radiat Oncol 12:13CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kuang WL, Zhou Q, Shen LF (2012) Outcomes and prognostic factors of conformal radiotherapy versus intensity-modulated radiotherapy for nasopharyngeal carcinoma. Clin Transl Oncol 14:783–790CrossRefPubMedGoogle Scholar
  24. 24.
    Ou X, Zhou X, Shi Q et al (2015) Treatment outcomes and late toxicities of 869 patients with nasopharyngeal carcinoma treated with definitive intensity modulated radiation therapy: new insight into the value of total dose of cisplatin and radiation boost. Oncotarget 6:38381–38397PubMedPubMedCentralGoogle Scholar
  25. 25.
    Blanco AI, Chao KS, El Naqa I et al (2005) Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy. Int J Radiat Oncol Biol Phys 62:1055–1069CrossRefPubMedGoogle Scholar
  26. 26.
    Petsuksiri J, Sermsree A, Thephamongkhol K et al (2011) Sensorineural hearing loss after concurrent chemoradiotherapy in nasopharyngeal cancer patients. Radiat Oncol 6:19CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Su SF, Huang Y, Xiao WW et al (2012) Clinical and dosimetric characteristics of temporal lobe injury following intensity modulated radiotherapy of nasopharyngeal carcinoma. Radiother Oncol 104:312–316CrossRefPubMedGoogle Scholar
  28. 28.
    Lee N, Xia P, Quivey JM et al (2002) Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 53:12–22CrossRefPubMedGoogle Scholar
  29. 29.
    Tan WL, Tan EH, Lim DW et al (2016) Advances in systemic treatment for nasopharyngeal carcinoma. Chin Clin Oncol 5:21CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Radiation Oncology, Department of Radiology, Faculty of MedicineKing Chulalongkorn Memorial Hospital, Chulalongkorn UniversityBangkokThailand

Personalised recommendations