Advertisement

Strahlentherapie und Onkologie

, Volume 194, Issue 3, pp 196–205 | Cite as

Left-sided breast cancer and risks of secondary lung cancer and ischemic heart disease

Effects of modern radiotherapy techniques
  • Stefanie Corradini
  • Hendrik Ballhausen
  • Helmut Weingandt
  • Philipp Freislederer
  • Stephan Schönecker
  • Maximilian Niyazi
  • Cristoforo Simonetto
  • Markus Eidemüller
  • Ute Ganswindt
  • Claus Belka
Original Article

Abstract

Purpose

Modern breast cancer radiotherapy techniques, such as respiratory-gated radiotherapy in deep-inspiration breath-hold (DIBH) or volumetric-modulated arc radiotherapy (VMAT) have been shown to reduce the high dose exposure of the heart in left-sided breast cancer. The aim of the present study was to comparatively estimate the excess relative and absolute risks of radiation-induced secondary lung cancer and ischemic heart disease for different modern radiotherapy techniques.

Methods

Four different treatment plans were generated for ten computed tomography data sets of patients with left-sided breast cancer, using either three-dimensional conformal radiotherapy (3D-CRT) or VMAT, in free-breathing (FB) or DIBH. Dose–volume histograms were used for organ equivalent dose (OED) calculations using linear, linear–exponential, and plateau models for the lung. A linear model was applied to estimate the long-term risk of ischemic heart disease as motivated by epidemiologic data. Excess relative risk (ERR) and 10-year excess absolute risk (EAR) for radiation-induced secondary lung cancer and ischemic heart disease were estimated for different representative baseline risks.

Results

The DIBH maneuver resulted in a significant reduction of the ERR and estimated 10-year excess absolute risk for major coronary events compared to FB in 3D-CRT plans (p = 0.04). In VMAT plans, the mean predicted risk reduction through DIBH was less pronounced and not statistically significant (p = 0.44). The risk of radiation-induced secondary lung cancer was mainly influenced by the radiotherapy technique, with no beneficial effect through DIBH. VMAT plans correlated with an increase in 10-year EAR for radiation-induced lung cancer as compared to 3D-CRT plans (DIBH p = 0.007; FB p = 0.005, respectively). However, the EARs were affected more strongly by nonradiation-associated risk factors, such as smoking, as compared to the choice of treatment technique.

Conclusion

The results indicate that 3D-CRT plans in DIBH pose the lowest risk for both major coronary events and secondary lung cancer.

Keywords

Deep inspiration breath-hold Secondary cancer Myocardial ischemia Three-dimensional conformal radiotherapy Volumetric-modulated arc radiotherapy 

Linksseitiger Brustkrebs und das Risiko von Sekundärmalignomen der Lunge und ischämischen Herzerkrankungen

Auswirkungen moderner Strahlentherapietechniken

Zusammenfassung

Hintergrund

Moderne Strahlentherapietechniken, wie die Bestrahlung in tiefer Inspiration (DIBH) oder die volumenmodulierte Rotationstherapie (VMAT), können die hohe Dosisbelastung des Herzens bei der Bestrahlung von linksseitigem Brustkrebs deutlich verringern. Ziel dieser Planungsstudie war es zu untersuchen, inwieweit unterschiedliche Bestrahlungstechniken bei linksseitigem Brustkrebs das relative und absolute Risiko für strahleninduzierte Sekundärmalignome der Lunge und schwere koronare Herzerkrankungen beeinflussen.

Methoden

Es wurden jeweils 4 Bestrahlungspläne für Computertomographiedatensätze von 10 Patientinnen mit linksseitigem Mammakarzinom generiert: eine tangentiale 3‑dimensionale konformale Strahlentherapie (3D-CRT) und eine volumenmodulierte Strahlentherapie (VMAT), jeweils in Ruheatmung (FB) und DIBH. Die Parameter der Dosis-Volumen-Histogramme (DVH) wurden zur Berechnung der „organ equivalent dose“ (OED) herangezogen, dabei wurde ein lineares, linear-exponentielles sowie ein Plateaumodell für die Lunge angewendet. Hiermit wurden das relative Risiko („excess relative risk“ [ERR]) und das absolute 10-Jahres-Risiko („excess absolute risk“ [EAR]) von strahleninduzierten Sekundärmalignomen der Lunge und koronaren Herzerkrankungen für unterschiedliche repräsentative Baseline-Risiken berechnet.

Ergebnisse

Durch die Bestrahlung in tiefer Inspiration zeigte sich ein deutlicher Vorteil bezüglich des absoluten 10-Jahres-Risikos schwerer koronarer Ereignisse für die 3D-CRT im Vergleich zur Ruheatmung (p = 0,04). Für die VMAT war die Risikoreduktion durch DIBH insgesamt geringer und statistisch nicht signifikant (p = 0,44). Das strahleninduzierte 10-Jahres-Risiko für Sekundärmalignome der Lunge wurde vorwiegend durch die Wahl der Strahlentherapietechnik und nicht durch die Anwendung eines Atemanhaltemanövers beeinflusst. Für VMAT zeigte sich ein erhöhtes 10-Jahres-Risiko für Sekundärmalignome der Lunge im Vergleich zur 3D-CRT (DIBH p = 0,007, FB p = 0,005). Dennoch war die EAR-Berechnung am stärksten durch nichtstrahlentherapieassoziierte Risikofaktoren – wie das Rauchen – beeinflusst.

Schlussfolgerung

Die Ergebnisse zeigen, dass 3D-CRT-Pläne in tiefer Inspiration (DIBH) das niedrigste Risiko sowohl für strahleninduzierte Sekundärmalignome als auch für schwere koronare Ereignisse aufweisen.

Schlüsselwörter

Tiefe Inspiration Sekundärmalignom Myokardischämie Dreidimensionale konformale Strahlentherapie Volumenmodulierte Rotationstherapie 

Notes

Conflict of interest

S. Corradini, H. Ballhausen, H. Weingandt, P. Freislederer, S. Schönecker, M. Niyazi, C. Simonetto, M. Eidemüller and U. Ganswindt declare that they have no competing interests. C. Belka has received research support and teaching honoraria from Elekta and C‑RAD.

References

  1. 1.
    Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232.  https://doi.org/10.1056/NEJMoa020989 CrossRefPubMedGoogle Scholar
  2. 2.
    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong J, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241.  https://doi.org/10.1056/NEJMoa022152 CrossRefPubMedGoogle Scholar
  3. 3.
    Corradini S, Niyazi M, Niemoeller OM, Minglun L, Roeder F, Eckel R, Schubert-Fritschle G et al (2014) Adjuvant radiotherapy after breast conserving surgery - a comparative effectiveness research study. Radiother Oncol 114:28–34.  https://doi.org/10.1016/j.radonc.2014.08.027 CrossRefPubMedGoogle Scholar
  4. 4.
    Darby SC, McGale P, Taylor CW, Peto R (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300 000 women in US SEER cancer registries. Lancet Oncol 6:557–565.  https://doi.org/10.1016/S1470-2045(05)70251-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Hooning MJ, Botma A, Aleman BMP, Baaijens MHA, Bartelink H, Klijn JGM, Taylor van Leeuwen CW, van Leeuwen FE (2007) Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 99:365–375.  https://doi.org/10.1093/jnci/djk064 CrossRefPubMedGoogle Scholar
  6. 6.
    Brenner DJ, Shuryak I, Jozsef G, Dewyngaert KJ, Formenti SC, Jozef G, Dewyngaert KJ, Formenti SC (2014) Risk and risk reduction of major coronary events associated with contemporary breast radiotherapy. JAMA Intern Med 174:158–160.  https://doi.org/10.1001/jamainternmed.2013.11790 CrossRefPubMedGoogle Scholar
  7. 7.
    Darby SC, Ewertz M, McGale PAMB, Blom-Goldman U, Brønnum D, Correa C et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998.  https://doi.org/10.1056/NEJMoa1209825 CrossRefPubMedGoogle Scholar
  8. 8.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106.  https://doi.org/10.1016/S0140-6736(05)67887-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C, Peto R, Baum M, Fisher B, Host H (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12:447–453CrossRefPubMedGoogle Scholar
  10. 10.
    Taylor CW, Nisbet A, Mcgale P, Darby SC (2007) Cardiac exposures in breast cancer radiotherapy: 1950s–1990s. Int J Radiat Oncol Biol Phys 69:1484–1495.  https://doi.org/10.1016/j.ijrobp.2007.05.034 CrossRefPubMedGoogle Scholar
  11. 11.
    Jacob S, Pathak A, Franck D, Latorzeff I, Jimenez G, Fondard O, Lapeyre M et al (2016) Early detection and prediction of cardiotoxicity after radiation therapy for breast cancer: the BACCARAT prospective cohort study. Radiat Oncol:1–10.  https://doi.org/10.1186/s13014-016-0627-5 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Smyth LM, Knight KA, Aarons YK, Wasiak J (2015) The cardiac dose-sparing benefits of deep inspiration breath-hold in left breast irradiation: a systematic review. J Med Radiat Sci 62:66–73.  https://doi.org/10.1002/jmrs.89 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tanguturi SK, Lyatskaya Y, Chen Y, Catalano PJ, Chen MH, Yeo WP, Marques A et al (2015) Prospective assessment of deep inspiration breath-hold using 3‑dimensional surface tracking for irradiation of left-sided breast cancer. Pract Radiat Oncol 5:358–365.  https://doi.org/10.1016/j.prro.2015.06.002 CrossRefPubMedGoogle Scholar
  14. 14.
    Schönecker S, Walter F, Freislederer P, Marisch C, Scheithauer H, Harbeck N, Corradini S, Belka C (2016) Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the CatalystTM/SentinelTM system for deep inspiration breath-hold (DIBH). Radiat Oncol 11:143.  https://doi.org/10.1186/s13014-016-0716-5 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaidar-Person O, Zagar TM, Oldan JD, Matney J, Jones EL, Das S, Jensen BC, Zellars RC, Wong TZ, Marks LB (2017) Early cardiac perfusion defects after left-sided radiation therapy for breast cancer: is there a volume response? Breast Cancer Res Treat 164:253–262.  https://doi.org/10.1007/s10549-017-4248-y CrossRefPubMedGoogle Scholar
  16. 16.
    Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, Jahnke L et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94:478–492.  https://doi.org/10.1016/j.ijrobp.2015.11.049 CrossRefPubMedGoogle Scholar
  17. 17.
    Latty D, Stuart KE, Wang W, Ahern V (2015) Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci 62:74–81.  https://doi.org/10.1002/jmrs.96 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Becker-Schiebe M, Stockhammer M, Hoffmann W, Wetzel F, Franz H (2016) Does mean heart dose sufficiently reflect coronary artery exposure in left-sided breast cancer radiotherapy? Strahlenther Onkol 192:624–631.  https://doi.org/10.1007/s00066-016-1011-y CrossRefPubMedGoogle Scholar
  19. 19.
    Mast ME, Heijenbrok MW, van Kempen-Harteveld ML, Petoukhova AL, Scholten AN, Wolterbeek R, Schreur JHM, Struikmans H (2016) Less increase of CT-based calcium scores of the coronary arteries. Strahlenther Onkol 192:696–704.  https://doi.org/10.1007/s00066-016-1026-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Beck RE, Kim L, Yue NJ, Haffty BG, Khan AJ, Goyal S (2014) Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Front Oncol 4:327.  https://doi.org/10.3389/fonc.2014.00327 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lohr F, El-Haddad M, Dobler B, Grau R, Joerg Wertz H, Kraus-Tiefenbacher U, Steil V, Madyan YA, Wenz F (2009) Potential effect of robust and simple IMRT approach for left-sided breast cancer on cardiac mortality. Int J Radiat Oncol Biol Phys 74:73–80.  https://doi.org/10.1016/j.ijrobp.2008.07.018 CrossRefPubMedGoogle Scholar
  22. 22.
    Viren T, Heikkila J, Myllyoja K, Koskela K, Lahtinen T, Seppala J (2015) Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy. Radiat Oncol 10:79.  https://doi.org/10.1186/s13014-015-0392-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao H, He M, Cheng G, Han D, Wu N, Shi D, Zhao Z, Jin J (2015) A comparative dosimetric study of left sided breast cancer after breast-conserving surgery treated with VMAT and IMRT. Radiat Oncol 10:231.  https://doi.org/10.1186/s13014-015-0531-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jöst V, Kretschmer M, Sabatino M, Würschmidt F, Dahle J, Ueberle F, Lorenzen J (2015) Heart dose reduction in breast cancer treatment with simultaneous integrated boost. Strahlenther Onkol 191:734–741.  https://doi.org/10.1007/s00066-015-0874-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Fiorentino A, Ruggieri R, Giaj-Levra N, Sicignano G, Di Paola G, Naccarato S, Fersino S et al (2017) Three-dimensional conformal versus intensity modulated radiotherapy in breast cancer treatment: is necessary a medical reversal? Radiol Med 122:146–153.  https://doi.org/10.1007/s11547-016-0700-z CrossRefPubMedGoogle Scholar
  26. 26.
    Osman SOS, Hol S, Poortmans PM, Essers M (2014) Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation. Radiother Oncol 112:17–22.  https://doi.org/10.1016/j.radonc.2014.04.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Pham TT, Ward R, Latty D, Owen C, Gebski V, Chojnowski J, Christopher K et al (2016) Left-sided breast cancer loco-regional radiotherapy with deep inspiration breath-hold: does volumetric-modulated arc radiotherapy reduce heart dose further compared with tangential intensity-modulated radiotherapy? J Med Imaging Radiat Oncol 60:545–553.  https://doi.org/10.1111/1754-9485.12459 CrossRefPubMedGoogle Scholar
  28. 28.
    Mast ME, Van Kempen-Harteveld L, Heijenbrok MW, Kalidien Y, Rozema H, Jansen WPA, Petoukhova AL, Struikmans H (2013) Left-sided breast cancer radiotherapy with and without breath-hold: does IMRT reduce the cardiac dose even further? Radiother Oncol 108:248–253.  https://doi.org/10.1016/j.radonc.2013.07.017 CrossRefPubMedGoogle Scholar
  29. 29.
    Abo-Madyan Y, Aziz MH, Aly MM, Schneider F, Sperk E, Clausen S, Giordano FA et al (2014) Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol 110:471–476.  https://doi.org/10.1016/j.radonc.2013.12.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Freislederer P, Reiner M, Hoischen W, Quanz A, Heinz C, Walter F, Belka C, Soehn M (2015) Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiat Oncol 10:68.  https://doi.org/10.1186/s13014-015-0376-x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Feng M, Moran JM, Koelling T, Aamer Chughtai JLC, Freedman L, Hayman JA et al (2011) Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys 79:10–18.  https://doi.org/10.1016/j.ijrobp.2009.10.058 CrossRefPubMedGoogle Scholar
  32. 32.
    Sautter-Bihl ML, Budach W, Dunst J, Feyer P, Haase W, Harms W, Sedlmayer F, Souchon R, Wenz F, Sauer R (2007) DEGRO practical guidelines for radiotherapy of breast cancer I. Strahlenther Onkol 183:661–666.  https://doi.org/10.1007/s00066-007-1811-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Kantz S, Söhn M, Troeller A, Reiner M, Weingandt H, Alber M, Belka C, Ganswindt U (2015) Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments. Radiat Oncol 10:184.  https://doi.org/10.1186/s13014-015-0447-z CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grantzau T, Skovhus Thomsen M, Væth M, Overgaard J (2014) Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol 111:366–373.  https://doi.org/10.1016/j.radonc.2014.05.004 CrossRefPubMedGoogle Scholar
  35. 35.
    Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, Hsieh LJ, Begg CB (2003) Variations in lung cancer risk among smokers. J Natl Cancer Inst 95:470–478.  https://doi.org/10.1093/jnci/95.6.470 CrossRefPubMedGoogle Scholar
  36. 36.
    Schneider U, Sumila M, Robotka J (2011) Site-specific dose-response relationships for cancer induction from the combined Japanese A‑bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model 8:27.  https://doi.org/10.1186/1742-4682-8-27 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dobler B, Maier J, Knott B, Maerz M, Loeschel R, Koelbl O (2016) Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter. Strahlenther Onkol.  https://doi.org/10.1007/s00066-016-1025-5 Google Scholar
  38. 38.
    Schneider U, Zwahlen D, Ross D, Kaser-Hotz B (2005) Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys 61:1510–1515.  https://doi.org/10.1016/j.ijrobp.2004.12.040 CrossRefPubMedGoogle Scholar
  39. 39.
    Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 168:1–64.  https://doi.org/10.1667/RR0763.1 CrossRefPubMedGoogle Scholar
  40. 40.
    Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. J Am Med Assoc 297:611–619CrossRefGoogle Scholar
  41. 41.
    Chambless LE, Heiss G, Shahar E, Earp MJ, Toole J (2004) Prediction of ischemic stroke risk in the Atherosclerosis Risk in Communities Study. Am J Epidemiol 160:259–269.  https://doi.org/10.1093/aje/kwh189 CrossRefPubMedGoogle Scholar
  42. 42.
    Schönecker S, Heinz C, Söhn M, Corradini S, Pazos M, Belka C, Scheithauer H (2016) Reduction of cardiac and coronary artery doses in irradiation of left-sided breast cancer during inspiration breath hold. Strahlenther Onkol.  https://doi.org/10.1007/s00066-016-1039-z PubMedGoogle Scholar
  43. 43.
    Yeung R, Conroy L, Long K, Walrath D, Li H, Smith W, Hudson A, Phan T (2015) Cardiac dose reduction with deep inspiration breath hold for left-sided breast cancer radiotherapy patients with and without regional nodal irradiation. Radiat Oncol 10:200.  https://doi.org/10.1186/s13014-015-0511-8 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hepp R, Ammerpohl M, Morgenstern C, Nielinger L, Erichsen P, Abdallah A, Galalae R (2015) Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer: dosimetrical comparison and clinical feasibility in 20 patients. Strahlenther Onkol 191:710–716.  https://doi.org/10.1007/s00066-015-0838-y CrossRefPubMedGoogle Scholar
  45. 45.
    Nissen HD, Appelt AL (2013) Improved heart, lung and target dose with deep inspiration breath hold in a large clinical series of breast cancer patients. Radiother Oncol 106:28–32.  https://doi.org/10.1016/j.radonc.2012.10.016 CrossRefPubMedGoogle Scholar
  46. 46.
    Han YE, Nava Paudel, Jiwon Sung, Myonggeun Yoon, Weon Kuu C, Wook Kim D (2016) Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget 7.  https://doi.org/10.18632/oncotarget.8392 Google Scholar
  47. 47.
    Boero IJ, Paravati AJ, Triplett DP, Hwang L, Matsuno RK, Gillespie EF, Yashar CM et al (2016) Modern radiation therapy and cardiac outcomes in breast cancer. Int J Radiat Oncol Biol Phys 94:700–708.  https://doi.org/10.1016/j.ijrobp.2015.12.018 CrossRefPubMedGoogle Scholar
  48. 48.
    Kirova YM, De Rycke Y, Gambotti L, Pierga J‑Y, Asselain B, Fourquet A (2008) Second malignancies after breast cancer: the impact of different treatment modalities. Br J Cancer 98:870–874.  https://doi.org/10.1038/sj.bjc.6604241 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Prochazka M, Granath F, Ekbom A, Shields PG, Hall P (2002) Lung cancer risks in women with previous breast cancer. Eur J Cancer 38:1520–1525CrossRefPubMedGoogle Scholar
  50. 50.
    Neugut I, Murray T, Santos J, Amols H, Hayes MK, Flannery JT, Robinson E (1994) Increased risk of lung cancer after breast cancer radiation therapy in cigarette smokers. Cancer 73:1615–1620CrossRefPubMedGoogle Scholar
  51. 51.
    Inskip PD, Stovall M, Flannery JT (1994) Lung cancer risk and radiation dose among women treated for breast cancer. J Natl Cancer Inst 86:983–988CrossRefPubMedGoogle Scholar
  52. 52.
    Lee B, Sunyoung L, Jiwon S, Yoon M (2014) Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot 34:325–331.  https://doi.org/10.1088/0952-4746/34/2/325 CrossRefPubMedGoogle Scholar
  53. 53.
    Ng J, Shuryak I, Yanguang Xu, Chao KSC, Brenner DJ, Burri RJ (2012) Predicting the risk of secondary lung malignancies associated with whole-breast radiation therapy. Int J Radiat Oncol Biol Phys 83:1101–1106.  https://doi.org/10.1016/j.ijrobp.2011.09.052 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ford MB, Sigurdson AJ, Petrulis ES, Ng CS, Kemp B, Cooksley C, McNeese M, Selwyn BJ, Spitz MR, Bondy ML (2003) Effects of smoking and radiotherapy on lung carcinoma in breast carcinoma survivors. Cancer 98:1457–1464.  https://doi.org/10.1002/cncr.11669 CrossRefPubMedGoogle Scholar
  55. 55.
    Kaufman EL, Jacobson JS, Hershman DL, Desai M, Neugut AI (2008) Effect of breast cancer radiotherapy and cigarette smoking on risk of second primary lung cancer. J Clin Oncol 26:392–398.  https://doi.org/10.1200/JCO.2007.13.3033 CrossRefPubMedGoogle Scholar
  56. 56.
    Borghini A, Gianicolo EAL, Picano E, Grazia Andreassi M (2013) Ionizing radiation and atherosclerosis: current knowledge and future challenges. Atherosclerosis 230:40–47.  https://doi.org/10.1016/j.atherosclerosis.2013.06.010 CrossRefPubMedGoogle Scholar
  57. 57.
    Marks LB, Zagar TM, Kaidar-Person O (2017) Reassessing the time course for radiation-induced cardiac mortality in patients with breast cancer. Int J Radiat Oncol Biol Phys 97:303–305.  https://doi.org/10.1016/j.ijrobp.2016.10.036 CrossRefPubMedGoogle Scholar
  58. 58.
    Kallman P, Agren A, Brahme A (1992) Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 62:249–262CrossRefPubMedGoogle Scholar
  59. 59.
    Eriksson F, Gagliardi G, Liedberg A, Lax I, Lee C, Levitt S, Lind B, Rutqvist LE (2000) Long-term cardiac mortality following radiation therapy for Hodgkin’s disease: Analysis with the relative seriality model. Radiother Oncol 55:153–162CrossRefPubMedGoogle Scholar
  60. 60.
    Gagliardi G, Lax I, Ottolenghi A, Rutqvist LE (1996) Long-term cardiac mortality after radiotherapy of breast cancer--application of the relative seriality model. Br J Radiol 69:839–846.  https://doi.org/10.1259/0007-1285-69-825-839 CrossRefPubMedGoogle Scholar
  61. 61.
    Baselet B, Rombouts C, Benotmane Baatout Aerts AMSA (2016) Cardiovascular diseases related to ionizing radiation: the risk of low-dose exposure (review). Int J Mol Med 38:1623–1641.  https://doi.org/10.3892/ijmm.2016.2777 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Little MP, Kleinerman RA, Stovall M, Smith SA, Mabuchi K (2012) Analysis of dose response for circulatory disease after radiotherapy for benign disease. Int J Radiat Oncol Biol Phys 84:1101–1109.  https://doi.org/10.1016/j.ijrobp.2012.01.053 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ et al (2010) Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340:b5349.  https://doi.org/10.1136/bmj.b5349 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017
corrected publication October 2017

Authors and Affiliations

  • Stefanie Corradini
    • 1
  • Hendrik Ballhausen
    • 1
  • Helmut Weingandt
    • 1
  • Philipp Freislederer
    • 1
  • Stephan Schönecker
    • 1
  • Maximilian Niyazi
    • 1
  • Cristoforo Simonetto
    • 2
  • Markus Eidemüller
    • 2
  • Ute Ganswindt
    • 1
    • 3
  • Claus Belka
    • 1
  1. 1.Department of Radiation OncologyUniversity Hospital, LMU MunichMunichGermany
  2. 2.Institute of Radiation ProtectionHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Department of Radiation OncologyMedical UniversityInnsbruckAustria

Personalised recommendations