Advertisement

Strahlentherapie und Onkologie

, Volume 193, Issue 11, pp 910–920 | Cite as

Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing

Retrospective analysis of 29 medulloblastoma patients
  • Sergiu ScobioalaEmail author
  • Ross Parfitt
  • Peter Matulat
  • Christopher Kittel
  • Fatemeh Ebrahimi
  • Heidi Wolters
  • Antoinette am Zehnhoff-Dinnesen
  • Hans Theodor Eich
Original Article

Abstract

Purpose

To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (Dmean), and total cisplatin dose.

Material and methods

In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared.

Results

Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though Dmean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m2, with the highest abnormal level found 8–12 months after RT regardless of radiation technique or fraction dose.

Conclusion

The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when Dmean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies.

Keywords

Hearing loss, sensorineural Radiotherapy, intensity-modulated Fraction dose Cochlea Bone conduction 

Effekte von Bestrahlungstechnik, Fraktionierung und Cisplatin-Gesamtdosis auf das Hörvermögen

Retrospektive Analyse von 29 Patienten mit Medulloblastom

Zusammenfassung

Ziel

Analyse von Inzidenz und Schweregrad einer sensorineuralen Schwerhörigkeit („sensorineural hearing loss“, SNHL) infolge der Wirkung unterschiedlicher Bestrahlungstechniken, Fraktionierungen, mittlerer kochleärer Strahlendosen (Dmean) und Cisplatin-Gesamtdosen.

Material und Methoden

Es wurden 29 Kinder (entsprechend 58 Ohren) mit Medulloblastom und mit subklinischen prätherapeutischen Hörschwellen analysiert. Radiotherapie und Cisplatin-basierte Chemotherapie wurden sequenziell gemäß dem HIT-MED-Protokoll eingesetzt. Verglichen wurden unter laufender Therapie und posttherapeutisch gewonnene audiologische Ergebnisse (mediane Nachbeobachtungszeit 2,6 Jahre).

Ergebnisse

Eine bilaterale Hochtonschwerhörigkeit wurde bei 26 (90 %) Patienten beobachtet. Ein Vergleich linker und rechter Ohren zeigte bei keiner Frequenz einen signifikanten Unterschied im mittleren Hörverlust. Eine signifikant geringere Schädigung (p < 0,05) ergab sich für Tomotherapie bei 6 kHz in der Knochenleitungs- und linksseitig bei 8 kHz in der Luftleitungsmessung im Vergleich zu kombinierter Bestrahlungstechnik. Die Fraktionierungsdosis zeigte keinen Effekt auf Inzidenz, Schweregrad und Latenzzeit der Schwerhörigkeit. Bei gleicher Dmean ergab sich nach kombinierter Bestrahlungstechnik ein höheres Risiko für einen Hörverlust im Hochtonbereich als nach einer Tomotherapie. Eine Zunahme des Schweregrads der Hörschädigung wurde bei einer Cisplatin-Gesamtdosis über 210 mg/m2 festgestellt, mit den höchsten abnormen Werten 8–12 Monate nach Ende der Bestrahlung, unabhängig von der Bestrahlungstechnik und von Fraktionierungsschemata.

Schlussfolgerung

Die Innenohrdosis/Dosis an der Kochlea sollte für Patienten mit simultaner Cisplatin-Gabe so niedrig wie möglich gehalten werden. Unabhängig von Fraktionierung und Technik besteht das Risiko eines klinisch relevanten Hörverlustes bei einer mittleren Innenohrdosis >45 Gy. Zudem zeigte die Ototoxizität durch Cisplatin einen dosisabhängigen Effekt auf einen bilateralen, besonders in den hohen Frequenzen betonten SNHL.

Schlüsselwörter

Sensorineuraler Hörverlust Intensitätsmodulierte Strahlentherapie Fraktionierte Dosis Kochlea Knochenleitung 

Notes

Compliance with ethical guidelines

Conflict of interest

S. Scobioala, R. Parfitt, P. Matulat, C. Kittel, F. Ebrahimi, H. Wolters, A. am Zehnhoff-Dinnesen and H.T. Eich declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

66_2017_1205_MOESM1_ESM.pdf (67 kb)
Suppl. Fig. 1 Diagram of Medulloblastoma Therapy Protocol (HIT MED 2000, updated 2008)
66_2017_1205_MOESM2_ESM.docx (20 kb)
Audological data of patients treated, detailed description of the radiation techniques

References

  1. 1.
    Paulino AC, Lobo M, Teh BS et al (2010) Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy in children with medulloblastoma. Int J Radiat Oncol Biol Phys 78:1445–1450CrossRefPubMedGoogle Scholar
  2. 2.
    Gajjar A, Chintagumpala M, Ashley D et al (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): Long-term results from a prospective, multicentre trial. Lancet Oncol 7:813–820CrossRefPubMedGoogle Scholar
  3. 3.
    Merchant TE, Kun LE, Krasin MJ et al (2008) Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int J Radiat Oncol Biol Phys 70:782–787CrossRefPubMedGoogle Scholar
  4. 4.
    Whitton AC, Syndikus I, Tait DM, Bloom HJ (1995) Radiotherapy and adjuvant chemotherapy for childhood medulloblastoma. The Royal Marsden Hospital experience. Strahlenther Onkol 171:615–621PubMedGoogle Scholar
  5. 5.
    Grabenbauer GG, Löhnert C, Erhardt J et al (1993) Medulloblastoma – the results after postoperative radiotherapy with and without adjuvant chemotherapy. Strahlenther Onkol 169:213–221PubMedGoogle Scholar
  6. 6.
    Kortmann RD, Kühl J, Timmermann B et al (2001) Current and future strategies in interdisciplinary treatment of medulloblastomas, supratentorial PNET (primitive neuroectodermal tumors) and intracranial germ cell tumors in childhood. Strahlenther Onkol 177:447–461CrossRefPubMedGoogle Scholar
  7. 7.
    Kortmann RD (2014) The chemotherapy before or after radiation therapy does not influence survival of children with high-risk medulloblastomas: Results of the multicenter and randomized study of the Pediatric Oncology Group (POG 9031). Strahlenther Onkol 190:106–108CrossRefPubMedGoogle Scholar
  8. 8.
    Low WK, Toh ST, Wee J et al (2006) Sensorineural hearing loss after radiotherapy and chemoradiotherapy: A single, blinded, randomized study. J Clin Oncol 24:1904–1909CrossRefPubMedGoogle Scholar
  9. 9.
    Chen WC, Jackson A, Budnick AS et al (2006) Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 106:820–829CrossRefPubMedGoogle Scholar
  10. 10.
    Kortmann RD, Kühl J, Timmermann B, Mittler U et al (2000) Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ‘91. Int J Radiat Oncol Biol Phys 46:269–279CrossRefPubMedGoogle Scholar
  11. 11.
    Paulino AC, Mazloom A, Teh BS et al (2011) Local control after craniospinal irradiation, intensity-modulated radiotherapy boost, and chemotherapy in childhood medulloblastoma. Cancer 117:635–641CrossRefPubMedGoogle Scholar
  12. 12.
    Bhandare N, Antonelli PJ, Morris CG et al (2007) Ototoxicity after radiotherapy for head and neck tumors. Int J Radiat Oncol Biol Phys 67:469–479CrossRefPubMedGoogle Scholar
  13. 13.
    Hua C, Bass JK, Khan R et al (2008) Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int J Radiat Oncol Biol Phys 72:892–899CrossRefPubMedGoogle Scholar
  14. 14.
    van der Putten L, de Bree R, Plukker JT et al (2006) Permanent unilateral hearing loss after radiotherapy for parotid gland tumors. Head Neck 28:902–908CrossRefPubMedGoogle Scholar
  15. 15.
    Knight KR, Kraemer DF, Neuwelt EA et al (2005) Ototoxicity in children receiving platinum chemotherapy: Underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 23:8588–8596CrossRefPubMedGoogle Scholar
  16. 16.
    Schell MJ, McHaney VA, Green AA et al (1989) Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation. J Clin Oncol 7:754–760CrossRefPubMedGoogle Scholar
  17. 17.
    Bhandare N, Jackson A, Eisbruch A et al (2010) Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys 76:50–57CrossRefGoogle Scholar
  18. 18.
    Wei Y, Zhou T, Zhu J et al (2014) Long-term outcome of sensorineural hearing loss in nasopharyngeal carcinoma patients: Comparison between treatment with radiotherapy alone and chemoradiotherapy. Cell Biochem Biophys 69:433–437CrossRefPubMedGoogle Scholar
  19. 19.
    Pan CC, Eisbruch A, Lee JS et al (2005) Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 61:1393–1402CrossRefPubMedGoogle Scholar
  20. 20.
    Huang E, Teh BS, Strother DR et al (2002) Intensity-modulated radiation therapy for pediatric medulloblastoma: Early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 52:599–605CrossRefPubMedGoogle Scholar
  21. 21.
    Paulino AC, Narayana A, Mohideen MN et al (2000) Posterior fossa boost in medulloblastoma: An analysis of dose to surrounding structures using 3‑dimensional (conformal) radiotherapy. Int J Radiat Oncol Biol Phys 46:281–286CrossRefPubMedGoogle Scholar
  22. 22.
    Tarbell NJ, Smith AR, Adams J et al (2000) The challenge of conformal radiotherapy in the curative treatment of medulloblastoma. Int J Radiat Oncol Biol Phys 46:265–266CrossRefPubMedGoogle Scholar
  23. 23.
    Putz F, Müller J, Wimmer C et al (2017) Stereotactic radiotherapy of vestibular schwannoma: Hearing preservation, vestibular function, and local control following primary and salvage radiotherapy. Strahlenther Onkol 193:200–212CrossRefPubMedGoogle Scholar
  24. 24.
    Brunner TB, Nestle U, Adebahr S et al (2016) Simultaneous integrated protection: A new concept for high-precision radiation therapy. Strahlenther Onkol 192:886–894CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Combs SE (2016) Clinical evaluation of proton therapy – how much benefit can be considered a benefit? Strahlenther Onkol 192:498–499CrossRefPubMedGoogle Scholar
  26. 26.
    Krause M (2014) Reduced acute toxicity for adults with medulloblastoma treated with proton beam craniospinal irradiation. Strahlenther Onkol 190:111–112 (These results are now described in the manuscript)CrossRefPubMedGoogle Scholar
  27. 27.
    Lannering B, Rutkowski S, Doz F et al (2012) Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: Results from the randomized multicenter HIT-SIOP PNET 4 trial. J Clin Oncol 30:3187–3193CrossRefPubMedGoogle Scholar
  28. 28.
    Schmidt CM, Bartholomäus E, Deuster D et al (2007) The “Muenster classification” of high frequency hearing loss following cisplatin chemotherapy. HNO 55:299–306CrossRefPubMedGoogle Scholar
  29. 29.
    Packer RJ, Gajjar A, Vezina G et al (2006) Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 24:4202–4208CrossRefPubMedGoogle Scholar
  30. 30.
    Lightfoot GR, Hughes JB (1993) Bone conduction errors at high frequencies: Implications for clinical and medico-legal practice. J Laryngol Otol 107:305–308CrossRefPubMedGoogle Scholar
  31. 31.
    Bohne BA, Marks JE, Glasgow GP (1985) Delayed effects of the ionizing radiation on the ear. Laryngoscope 95:818–828CrossRefPubMedGoogle Scholar
  32. 32.
    Polkinghorn WR, Dunkel IJ, Souweidane MM et al (2011) Disease control and ototoxicity using intensity-modulated radiation therapy tumor-bed boost for medulloblastoma. Int J Radiat Oncol Biol Phys 81:15–20CrossRefGoogle Scholar
  33. 33.
    Merchant TE, Gould CJ, Xiong X et al (2004) Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int J Radiat Oncol Biol Phys 58:1194–1207CrossRefPubMedGoogle Scholar
  34. 34.
    Honoré HB, Bentzen SM, Moller K et al (2002) Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: Individualized risk estimation. Radiother Oncol 65:9–16CrossRefPubMedGoogle Scholar
  35. 35.
    Oh YT, Kim CH, Choi JH et al (2004) Sensory neural hearing loss after concurrent cisplatin and radiation therapy for nasopharyngeal carcinoma. Radiother Oncol 72:79–82CrossRefPubMedGoogle Scholar
  36. 36.
    Kretschmar CS, Warren MP, Lavally BL et al (1990) Ototoxicity of preradiation cisplatin for children with central nervous system tumors. J Clin Oncol 8:1191–1198CrossRefPubMedGoogle Scholar
  37. 37.
    Knight KR, Kraemer DF, Winter C et al (2007) Early changes in auditory function as a result of platinum chemotherapy: Use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol 25:1190–1195CrossRefPubMedGoogle Scholar
  38. 38.
    Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72:931–935CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Department of Radiotherapy and RadiooncologyUniversity Hospital of MuensterMuensterGermany
  2. 2.Department of Phoniatrics and Pediatric AudiologyUniversity Hospital of MuensterMuensterGermany

Personalised recommendations