Advertisement

Strahlentherapie und Onkologie

, Volume 193, Issue 12, pp 995–1004 | Cite as

T1–2 glottic cancer treated with radiotherapy and/or surgery

  • Mohamed Shelan
  • Lukas Anschuetz
  • Adrian D. Schubert
  • Beat Bojaxhiu
  • Alan Dal Pra
  • Frank Behrensmeier
  • Daniel M. Aebersold
  • Roland Giger
  • Olgun ElicinEmail author
Original Article

Abstract

Background

The optimal treatment strategy for stage I–II glottic squamous cell carcinoma (SCC) is not well-defined. This study analyzed treatment results and prognostic factors.

Patients and methods

This is a single-institution retrospective analysis of 244 patients with T1–2 glottic SCC who underwent normofractionated radiotherapy (RT) and/or surgery between 1990 and 2013. The primary endpoint was relapse-free survival (RFS).

Results

Median age was 65 years (range: 36–92 years), the majority (82%) having stage I disease. Definitive RT was used in 82% (median dose: 68 Gy, 2 Gy per fraction). Median follow-up was 59 months. The 5‑year RFS rates were 83 and 75% (p = 0.05) for stage I and 62 and 50% (p = 0.47) for stage II in the RT and surgery groups, respectively. Multivariate analyses indicate T1 vs. T2 and RT vs. surgery as independent prognostic factors for RFS, with hazard ratios of 0.38 (95% confidence interval, CI: 0.21–0.72) and 0.53 (95% CI: 0.30–0.99), respectively (p < 0.05). The 5‑year overall and cause-specific survival rates in the whole cohort were 92 and 96%, respectively, with no significant differences between treatment groups. Anterior commissure involvement was neither a prognostic nor a predictive factor. The incidence of secondary malignancies was not significantly different between patients treated with and without RT (22 vs. 9% at 10 years, respectively, p = 0.18).

Conclusion

Despite a possible selection bias, our series demonstrates improved RFS with RT over surgery in stage I glottic SCC.

Keywords

Carcinoma, squamous cell  Laryngeal neoplasms Survival Microsurgery Laryngectomy 

Behandlung früher Glottiskarzinome (T1–2) mit Strahlentherapie und/oder Operation

Zusammenfassung

Hintergrund

Die optimale Behandlungsstrategie für ein Plattenepithelkarzinom (SCC) der Stimmbänder im Stadium I–II ist nicht gut definiert. In dieser Studie wurden Behandlungsergebnisse und prognostische Faktoren untersucht.

Patienten und Methoden

In dieser retrospektiv unizentrischen Studie wurden 244 Patienten mit einem frühen Glottis-SCC (T1–2) zwischen 1990 und 2013 strahlentherapeutisch (RT) und/oder chirurgisch behandelt. Primärer Endpunkt war das rezidivfreie Überleben (RFS).

Ergebnisse

Das mediane Alter betrug 65 Jahre (Spanne 36–92). Die Mehrheit (82 %) hatte ein Stadium I. Die mediane Tumornachsorge betrug 59 Monate. Von den Patienten wurden 82% bestrahlt, die Übrigen wurden operiert. Die mediane RT-Dosis war 68 Gy (2 Gy/Fraktion). Für die radiotherapeutisch und chirurgisch behandelten Gruppen betrug das 5‑Jahres-RFS 83 bzw. 75 % mit einem Stadium I (p = 0,05) und 62 bzw. 50 % mit einem Stadium II (p = 0,47). Die multivariaten Analysen zeigen T1- vs. T2-Karzinome und RT vs. Chirurgie als unabhängige prognostische Faktoren für das RFS, mit Hazard Ratios von jeweils 0,38 (95 %-Konfidenzintervall [KI] 0,21–0,72) und 0,53 (95 %-KI 0,30–0,99; p < 0,05). Die 5‑Jahres-Gesamt- und krankheitsspezifische Überlebensrate der ganzen Studienpopulation betrugen 92 % und 96 %, ohne signifikanten Unterschied zwischen beiden Therapiestrategien. Die Infiltration der vorderen Kommissur war weder prognostisch noch prädiktiv. Bezüglich der Inzidenz von Zweitmalignomen bei Patienten mit und ohne RT konnten keine signifikanten Unterschiede gefunden werden (22 vs. 9 % nach 10 Jahren; p = 0,18).

Schlussfolgerung

Trotz einer möglichen Stichprobenverzerrung zeigen unsere Daten eine im Vergleich zur Chirurgie bessere RFS bei bestrahltem Stadium-I-Glottis-SCC.

Schlüsselwörter

Plattenepithelkarzinom Larynxneoplasien Überleben Mikrochirurgie Laryngektomie 

Notes

Conflict of interest

M. Shelan, L. Anschuetz, A.D. Schubert, B. Bojaxhiu, A. Dal Pra, F. Behrensmeier, D.M. Aebersold, R. Giger, and O. Elicin declare that they have no competing interests.

Supplementary material

66_2017_1139_MOESM1_ESM.docx (58 kb)
Supplementary Table: Localization of the Second Malignancies

References

  1. 1.
    Mastronikolis N, Papadas T, Goumas P et al (2011) Head and neck: laryngeal tumors: an overview. Atlas Genet Cytogenet Oncol Haematol 13(11):888–893Google Scholar
  2. 2.
    Lyhne NM, Johansen J, Kristensen CA et al (2016) Pattern of failure in 5001 patients treated for glottic squamous cell carcinoma with curative intent – a population based study from the DAHANCA group. Radiother Oncol 118(2):257–266CrossRefPubMedGoogle Scholar
  3. 3.
    Chera BS, Amdur RJ, Morris CG, Kirwan JM, Mendenhall WM (2010) T1N0 to T2N0 squamous cell carcinoma of the glottic larynx treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 78(2):461–466CrossRefPubMedGoogle Scholar
  4. 4.
    Ermiş E, Teo M, Dyker KE, Fosker C, Sen M, Prestwich RJ (2015) Definitive hypofractionated radiotherapy for early glottic carcinoma: experience of 55 Gy in 20 fractions. Radiat Oncol 10(1):203CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mendenhall WM, Werning JW, Hinerman RW, Amdur RJ, Villaret DB (2004) Management of T1–T2 glottic carcinomas. Cancer 100(9):1786–1792CrossRefPubMedGoogle Scholar
  6. 6.
    Ambrosch P (2007) The role of laser microsurgery in the treatment of laryngeal cancer. Curr Opin Otolaryngol Head Neck Surg 15(2):82–88CrossRefPubMedGoogle Scholar
  7. 7.
    Hartl DM, Ferlito A, Brasnu DF et al (2011) Evidence-based review of treatment options for patients with glottic cancer. Head Neck 33(11):1638–1648CrossRefPubMedGoogle Scholar
  8. 8.
    Warner L, Chudasama J, Kelly CG et al (2014) Radiotherapy versus open surgery versus endolaryngeal surgery (with or without laser) for early laryngeal squamous cell cancer. Cochrane Database Syst Rev 12(12):CD002027. doi: 10.1002/14651858.cd002027 Google Scholar
  9. 9.
    Chen JJ, Stessin A, Christos P, Wernicke AG, Nori D, Parashar B (2015) Differences in survival outcome between stage I and stage II glottic cancer: a SEER-based analysis. Laryngoscope 125(9):2093–2098CrossRefPubMedGoogle Scholar
  10. 10.
    Ogol’tsova ES, Paches AI, Matiakin EG et al (1990) Comparative evaluation of the effectiveness of radiotherapy, surgery and combined treatment of stage I–II laryngeal cancer (T1–2NoMo) based on the data of a cooperative randomized study. Vestn Otorinolaringol 3:3–7Google Scholar
  11. 11.
    Aaltonen L‑M, Rautiainen N, Sellman J et al (2014) Voice quality after treatment of early vocal cord cancer: a randomized trial comparing laser surgery with radiation therapy. Int J Radiat Oncol Biol Phys 90(2):255–260CrossRefPubMedGoogle Scholar
  12. 12.
    Higgins KM, Shah MD, Ogaick MJ, Enepekides D (2009) Treatment of early-stage glottic cancer: meta-analysis comparison of laser excision versus radiotherapy. J Otolaryngol Head Neck Surg 38(6):603–612PubMedGoogle Scholar
  13. 13.
    Abdurehim Y, Hua Z, Yasin Y, Xukurhan A, Imam I, Yuqin F (2012) Transoral laser surgery versus radiotherapy: systematic review and meta-analysis for treatment options of T1a glottic cancer. Head Neck 34(1):23–33CrossRefPubMedGoogle Scholar
  14. 14.
    Yoo J, Lacchetti C, Hammond JA, Gilbert RW, Head and Neck Cancer Disease Site Group (2014) Role of endolaryngeal surgery (with or without laser) versus radiotherapy in the management of early (T1) glottic cancer: a systematic review. Head Neck 36(12):1807–1819CrossRefPubMedGoogle Scholar
  15. 15.
    Mo H‑L, Li J, Yang X et al (2017) Transoral laser microsurgery versus radiotherapy for T1 glottic carcinoma: a systematic review and meta-analysis. Lasers Med Sci 32(2):461–467CrossRefPubMedGoogle Scholar
  16. 16.
    Megwalu UC, Panossian H (2016) Survival outcomes in early stage laryngeal cancer. Anticancer Res 36(6):2903–2907PubMedGoogle Scholar
  17. 17.
    Warner L, Lee K, Homer JJ (2016) Transoral laser microsurgery versus radiotherapy for T2 glottic squamous cell carcinoma: a systematic review of local control outcomes. Clin Otolaryngol:. doi: 10.1111/coa.12790 PubMedGoogle Scholar
  18. 18.
    Le QT, Fu KK, Kroll S et al (1997) Influence of fraction size, total dose, and overall time on local control of T1–T2 glottic carcinoma. Int J Radiat Oncol Biol Phys 39(1):115–126CrossRefPubMedGoogle Scholar
  19. 19.
    Overgaard J, Hansen HS, Specht L et al (2003) Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet 362(9388):933–940CrossRefPubMedGoogle Scholar
  20. 20.
    Rosenthal DI, Ang KK (2004) Altered radiation therapy fractionation, chemoradiation, and patient selection for the treatment of head and neck squamous carcinoma. Semin Radiat Oncol 14(2):153–166CrossRefPubMedGoogle Scholar
  21. 21.
    Bourhis J, Overgaard J, Audry H et al (2006) Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368(9538):843–854CrossRefPubMedGoogle Scholar
  22. 22.
    Sakata K, Someya M, Hori M, Nakata K, Takagi M, Hareyama M (2008) Hyperfractionated accelerated radiotherapy for T1,2 glottic carcinoma. Consideration of time-dose factors. Strahlenther Onkol 184(7):364–369CrossRefPubMedGoogle Scholar
  23. 23.
    Becker-Schiebe M, Christiansen H (2014) Non-inferior moderate hypofractionated irradiation of glottis T1/T2 laryngeal cancer. Strahlenther Onkol 190(7):694–695CrossRefPubMedGoogle Scholar
  24. 24.
    Yamazaki H, Nishiyama K, Tanaka E, Koizumi M, Chatani M (2006) Radiotherapy for early glottic carcinoma (T1N0M0): results of prospective randomized study of radiation fraction size and overall treatment time. Int J Radiat Oncol Biol Phys 64(1):77–82CrossRefPubMedGoogle Scholar
  25. 25.
    Moon SH, Cho KH, Chung EJ et al (2013) A prospective randomized trial comparing hypofractionation with conventional fractionation radiotherapy for T1–2 glottic squamous cell carcinomas: results of a Korean Radiation Oncology Group (KROG-0201) study. Radiother Oncol 110(1):98–103CrossRefPubMedGoogle Scholar
  26. 26.
    Trotti A, Zhang Q, Bentzen SM et al (2014) Randomized trial of hyperfractionation versus conventional fractionation in T2 squamous cell carcinoma of the vocal cord (RTOG 9512). Int J Radiat Oncol Biol Phys 89(5):958–963CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lyhne NM, Primdahl H, Kristensen CA et al (2015) The DAHANCA 6 randomized trial: effect of 6 vs 5 weekly fractions of radiotherapy in patients with glottic squamous cell carcinoma. Radiother Oncol 117(1):91–98. doi: 10.1016/j.radonc.2015.07.004 CrossRefPubMedGoogle Scholar
  28. 28.
    Garden AS, Forster K, Wong PF, Morrison WH, Schechter NR, Ang KK (2003) Results of radiotherapy for T2N0 glottic carcinoma: Does the “2” stand for twice-daily treatment? Int J Radiat Oncol Biol Phys 55(2):322–328CrossRefPubMedGoogle Scholar
  29. 29.
    Cellai E, Frata P, Magrini SM et al (2005) Radical radiotherapy for early glottic cancer: results in a series of 1087 patients from two Italian radiation oncology centers. I. The case of T1N0 disease. Int J Radiat Oncol Biol Phys 63(5):1378–1386CrossRefPubMedGoogle Scholar
  30. 30.
    Laccourreye O, Muscatello L, Laccourreye L, Naudo P, Brasnu D, Weinstein G (1997) Supracricoid partial laryngectomy with cricohyoidoepiglottopexy for “early” glottic carcinoma classified as T1-T2N0 invading the anterior commissure. Am J Otolaryngol 18(6):385–390CrossRefPubMedGoogle Scholar
  31. 31.
    Marshak GG, Brenner B, Shvero J et al (1999) Prognostic factors for local control of early glottic cancer: rhe Rabin Medical Center retrospective study on 207 patients. Int J Radiat Oncol Biol Phys 43(5):1009–1013CrossRefPubMedGoogle Scholar
  32. 32.
    Smee RI, Meagher NS, Williams JR, Broadley K, Bridger GP (2010) Role of radiotherapy in early glottic carcinoma. Head Neck 32(7):850–859PubMedGoogle Scholar
  33. 33.
    Tong C‑C, Au K‑H, Ngan RKC et al (2011) Impact and relationship of anterior commissure and time-dose factor on the local control of T1N0 glottic cancer treated by 6 MV photons. Radiat Oncol 6(1):53CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Modesto A, Laprie A, Vieillevigne L et al (2015) Intensity-modulated radiotherapy for laryngeal and hypopharyngeal cancer: minimization of late dysphagia without jeopardizing tumor control. Strahlenther Onkol 191(3):225–233CrossRefPubMedGoogle Scholar
  35. 35.
    van Asselen B, Raaijmakers CPJ, Lagendijk JJW, Terhaard CHJ (2003) Intrafraction motions of the larynx during radiotherapy. Int J Radiat Oncol Biol Phys 56(2):384–390CrossRefPubMedGoogle Scholar
  36. 36.
    Bradley JA, Paulson ES, Ahunbay E, Schultz C, Li XA, Wang D (2011) Dynamic MRI analysis of tumor and organ motion during rest and deglutition and margin assessment for radiotherapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys 81(5):e803–12CrossRefPubMedGoogle Scholar
  37. 37.
    Dorresteijn LDA, Kappelle AC, Boogerd W et al (2002) Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol 20(1):282–288CrossRefPubMedGoogle Scholar
  38. 38.
    Smith GL, Smith BD, Buchholz TA et al (2008) Cerebrovascular disease risk in older head and neck cancer patients after radiotherapy. J Clin Oncol 26(31):5119–5125CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chera BS, Amdur RJ, Morris CG, Mendenhall WM (2010) Carotid-sparing intensity-modulated radiotherapy for early-stage squamous cell carcinoma of the true vocal cord. Int J Radiat Oncol Biol Phys 77(5):1380–1385CrossRefPubMedGoogle Scholar
  40. 40.
    Kwa SLS, Al-Mamgani A, Osman SOS, Gangsaas A, Levendag PC, Heijmen BJM (2015) Inter- and Intrafraction target motion in highly focused single vocal cord irradiation of T1a larynx cancer patients. Int J Radiat Oncol Biol Phys 93(1):190–195CrossRefPubMedGoogle Scholar
  41. 41.
    Al-Mamgani A, Kwa SLS, Tans L et al (2015) Single vocal cord irradiation: image guided intensity modulated hypofractionated radiation therapy for T1a glottic cancer: early clinical results. Int J Radiat Oncol Biol Phys 93(2):337–343CrossRefPubMedGoogle Scholar
  42. 42.
    Yamamoto E, Shibuya H, Yoshimura R, Miura M (2002) Site specific dependency of second primary cancer in early stage head and neck squamous cell carcinoma. Cancer 94(7):2007–2014CrossRefPubMedGoogle Scholar
  43. 43.
    Cooper JS, Pajak TF, Rubin P et al (1989) Second malignancies in patients who have head and neck cancer: incidence, effect on survival and implications based on the RTOG experience. Int J Radiat Oncol Biol Phys 17(3):449–456CrossRefPubMedGoogle Scholar
  44. 44.
    Rusthoven K, Chen C, Raben D, Kavanagh B (2008) Use of external beam radiotherapy is associated with reduced incidence of second primary head and neck cancer: a SEER database analysis. Int J Radiat Oncol Biol Phys 71(1):192–198CrossRefPubMedGoogle Scholar
  45. 45.
    Farhadieh RD, Rees CGG, Yang JL, Salardini A, Russell P, Smee R (2009) Radiotherapy in larynx squamous cell carcinoma is not associated with an increased diagnosis of second primary tumours. Clin Oncol 21(4):315–319CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Radiation Oncology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
  2. 2.Department of Otorhinolaryngology – Head and Neck Surgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
  3. 3.Radiation-Oncology-Centre, Biel – Seeland – Berner JuraBielSwitzerland

Personalised recommendations