Advertisement

Strahlentherapie und Onkologie

, Volume 193, Issue 3, pp 213–220 | Cite as

A 4D ultrasound real-time tracking system for external beam radiotherapy of upper abdominal lesions under breath-hold

  • Dwi Seno Kuncoro Sihono
  • Lena Vogel
  • Christel Weiß
  • Johannes Thölking
  • Frederik Wenz
  • Frank Lohr
  • Judit Boda-Heggemann
  • Hansjörg Wertz
Original Article

Abstract

Background and purpose

To evaluate a novel four-dimensional (4D) ultrasound (US) tracking system for external beam radiotherapy of upper abdominal lesions under computer-controlled deep-inspiration breath-hold (DIBH).

Materials and methods

The tracking accuracy of the research 4D US system was evaluated using two motion phantoms programmed with sinusoidal and breathing patterns to simulate free breathing and DIBH. Clinical performance was evaluated with five healthy volunteers. US datasets were acquired in computer-controlled DIBH with varying angular scanning angles. Tracked structures were renal pelvis (spherical structure) and portal/liver vein branches (non-spherical structure). An external marker was attached to the surface of both phantoms and volunteers as a secondary object to be tracked by an infrared camera for comparison.

Results

Phantom measurements showed increased accuracy of US tracking with decreasing scanning range/increasing scanning frequency. The probability of lost tracking was higher for small scanning ranges (43.09% for 10° and 13.54% for 20°).The tracking success rates in healthy volunteers during DIBH were 93.24 and 89.86% for renal pelvis and portal vein branches, respectively. There was a strong correlation between marker motion and US tracking for the majority of analyzed breath-holds: 84.06 and 88.41% of renal pelvis target results and 82.26 and 91.94% of liver vein target results in anteroposterior and superoinferior directions, respectively; Pearson’s correlation coefficient was between 0.71 and 0.99.

Conclusion

The US system showed a good tracking performance in 4D motion phantoms. The tracking capability of surrogate structures for upper abdominal lesions in DIBH fulfills clinical requirements. Further investigation in a larger cohort of patients is underway.

Keywords

Stereotactic body radiotherapy (SBRT) Ultrasound Radiotherapy, image-guided Intrafractional tracking Upper abdomen 

Ein 4D-Ultraschall-Tracking-System für die externe Radiotherapie bei Oberbauchläsionen unter Atemanhalt

Zusammenfassung

Hintergrund und Ziel

Evaluation eines neuen vierdimensionalen (4D) Ultraschall(US)-Tracking-Systems für die externe Strahlentherapie von Oberbauchläsionen unter computergesteuertem tiefem Atemanhalt (DIBH).

Material und Methoden

Die Tracking-Genauigkeit des 4D-US-Systems wurde mittels zweier Bewegungsphantome, die mit sinusförmigen und atmungsähnlichen Bewegungsmustern zur Simulation der freien Atmung und DIBH programmiert wurden, bestimmt. Die klinische Leistungsfähigkeit des Systems wurde an 5 gesunden Probanden untersucht. US-Datensätze wurden in computergesteuertem DIBH mit unterschiedlichen Scanwinkeln erfasst. Die getrackten Strukturen waren Nierenbecken (kugelförmige Struktur) und Portal-/Lebervenenzweige (nicht kugelförmige Struktur). Zum Vergleich wurde ein externer Marker als sekundäres, von einer Infrarotkamera getracktes Objekt auf der Oberfläche beider Phantome und Probanden angebracht.

Ergebnisse

Phantommessungen zeigten eine erhöhte Genauigkeit des US-Trackings, wenn der Scanbereich verkleinert wurde. Die Wahrscheinlichkeit für einen Verlust der zu trackenden Struktur war für kleine Scanbereiche höher (43,09 % für 10°; 13,54 % für 20°). Die Tracking-Erfolgsraten bei gesunden Probanden während DIBH waren 93,24 % und 89,86 % für Nierenbecken bzw. Pfortaderäste. Die Mehrheit der untersuchten Atemanhaltephasen wies eine starke Korrelation zwischen der Bewegung des Markers und dem US-Tracking auf: 84,06 und 88,41 % für Nierenbeckentargets und 82,26 und 91,94 % für Lebervenentargets jeweils in anteroposteriorer und superoinferiorer Richtung; der Pearson-Korrelationskoeffizient lag zwischen 0,71 und 0,99.

Schlussfolgerung

Das US-System zeigte eine gute Tracking-Leistung in 4D-Bewegungsphantomen. Die Tracking-Fähigkeit von Surrogat-Strukturen für Oberbauchläsionen in DIBH erfüllt die klinischen Anforderungen. Weitere Untersuchungen in einer größeren Patientengruppe sind im Gange.

Schlüsselwörter

Stereotaktische Körperbestrahlung Ultraschall Bildgesteuerte Strahlentherapie Intrafraktionäre Verfolgung Abdomen 

Notes

Conflict of interest

D.S.K. Sihono, L. Vogel, C. Weiß, and J. Thölking declare that they have no competing interests. F. Lohr received research grants from Elekta and IBA, teaching honoria from Elekta and IBA, board honoria from C‑Rad, and works for the IBA advisory board. F. Wenz received research grant and teaching honoraria from Elekta, and works as consultant and for the advisory board of Elekta. J. Boda-Heggemann received a research grant, teaching honoraria, and travel expenses from Elekta. H. Wertz received a research grant and teaching honoraria from Elekta and IBA.

References

  1. 1.
    Scorsetti M, Clerici E, Comito T (2014) Stereotactic body radiation therapy for liver metastases. J Gastrointest Oncol 5(3):190–197. doi: 10.3978/j.issn.2078-6891.2014.039 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kirkpatrick JP, Kelsey CR, Palta M, Cabrera AR, Salama JK, Patel P, Perez BA, Lee J, Yin F‑F (2014) Stereotactic body radiotherapy: a critical review for nonradiation oncologists. Cancer 120(7):942–954. doi: 10.1002/cncr.28515 CrossRefPubMedGoogle Scholar
  3. 3.
    Boda-Heggemann J, Frauenfeld A, Weiss C, Simeonova A, Neumaier C, Siebenlist K, Attenberger U, Heußel CP, Schneider F, Wenz F, Lohr F (2014) Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases. Radiat Oncol 9(1):1–9. doi: 10.1186/1748-717X-9-10 CrossRefGoogle Scholar
  4. 4.
    EB-v G, Svd M, Hendry J, Buijsen J, Visser P, Fontanarosa D, Lachainey M, Lammering G, Verhaegen F (2012) Active breathing control in combination with ultrasound imaging: a feasibility study of image guidance in stereotactic body radiation therapy of liver lesions. Int J Radiat Oncol Biol Phys 85(4):1096–1102. doi: 10.1016/j.ijrobp.2012.08.016 Google Scholar
  5. 5.
    Shirato H, Suzuki K, Sharp GC, Fujita K, Onimaru R, Fujino M, Kato N, Osaka Y, Kinoshita R, Taguchi H, Onodera S, Miyasaka K (2006) Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 64(4):1229–1236CrossRefPubMedGoogle Scholar
  6. 6.
    Harris EJ, Miller NR, Bamber JC, Symonds-Tayler JRN, Evans PM (2010) Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound. Phys Med Biol 55:3363–3380. doi: 10.1088/0031-9155/55/12/007 CrossRefPubMedGoogle Scholar
  7. 7.
    Boda-Heggemann J, Walter C, Mai S, Dobler B, Dinter D, Wenz F, Lohr F (2006) Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound. Strahlenther Onkol 182:216–221CrossRefPubMedGoogle Scholar
  8. 8.
    O’Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E (2016) Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 61(8):R90–R137. doi: 10.1088/0031-9155/61/8/r90 CrossRefPubMedGoogle Scholar
  9. 9.
    Boda-Heggemann J, Dinter D, Weiss C, Frauenfeld A, Siebenlist K, Attenberger U, Ottstadt M, Schneider F, Hofheinz R‑D, Wenz F, Lohr F (2012) Hypofractionated image-guided breath-hold SABR (Stereotactic Ablative Body Radiotherapy) of liver metastases – clinical results. Radiat Oncol 7(1):92CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, Martinez AA (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919CrossRefPubMedGoogle Scholar
  11. 11.
    Boda-Heggemann J, Knopf A‑C, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, Jahnke L, Fleckenstein J, Vogel L, Arns A, Blessing M, Wenz F, Lohr F (2016) Deep inspiration breath hold – based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94(3):478–492CrossRefPubMedGoogle Scholar
  12. 12.
    Abbas H, Chang B, Chen ZJ (2014) Motion management in gastrointestinal cancers. J Gastrointest Oncol 5:223–235. doi: 10.3978/j.issn.2078-6891.2014.028 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lachaine M, Falco T (2013) Intrafractional prostate motion management with the Clarity Autoscan system. Med Phys Int 1:72–80Google Scholar
  14. 14.
    Boda-Heggemann J, Fleckenstein J, Lohr F, Wertz H, Nachit M, Blessing M, Stsepankou D, Löb I, Küpper B, Kavanagh A, Hansen VN, Brada M, Wenz F, McNair H (2011) Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors: simulation with a dynamic phantom and first patient data. Radiother Oncol 98(3):309–316. doi: 10.1016/j.radonc.2011.01.019 CrossRefPubMedGoogle Scholar
  15. 15.
    Shimizu S, Shirato H, Xo B, Kagei K, Nishioka T, Hashimoto S, Tsuchiya K, Aoyama H, Miyasaka K (1999) Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging. Radiother Oncol 50:367–370CrossRefPubMedGoogle Scholar
  16. 16.
    Park JC, Park SH, Kim JH, Yoon SM, Song SY, Liu Z, Song B, Kauweloa K, Webster MJ, Sandhu A, Mell LK, Jiang SB, Mundt AJ, Song WY (2012) Liver motion during cone beam computed tomography guided stereotactic body radiation therapy. Med Phys 39:6431. doi: 10.1118/1.4754658 CrossRefPubMedGoogle Scholar
  17. 17.
    Hallman JL, Mori S, Sharp GC, Lu H‑M, Hong TS, Chen GTY (2012) A four-dimensional computed tomography analysis of multiorgan abdominal motion. Int J Radiat Oncol Biol Phys 83(1):435–441CrossRefPubMedGoogle Scholar
  18. 18.
    Wong VYW, Tung SY, Ng AWY, Li FAS, Leung JOY (2010) Real-time monitoring and control on deep inspiration breath-hold for lung cancer radiotherapy – Combination of ABC and external marker tracking. Med Phys 37(9):4673–4683. doi: 10.1118/1.3476463 CrossRefPubMedGoogle Scholar
  19. 19.
    Tanguturi SK, Lyatskaya Y, Chen Y, Catalano PJ, Chen MH, Yeo WP, Marques A, Truong L, Yeh M, Orlina L, Wong JS, Punglia RS, Bellon JR (2015) Prospective assessment of deep inspiration breath-hold using 3‑dimensional surface tracking for irradiation of left-sided breast cancer. Pract Radiat Oncol 5(6):358–365. doi: 10.1016/j.prro.2015.06.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Stieler F, Wenz F, Scherrer D, Bernhardt M, Lohr F (2012) Clinical evaluation of a commercial surface-imaging system for patient positioning in radiotherapy. Strahlenther Onkol 188(12):1080–1084. doi: 10.1007/s00066-012-0244-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM (2006) Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 65:528–534CrossRefPubMedGoogle Scholar
  22. 22.
    Shirato H, Shimizu S, Kunieda T, Kitamura K, Herk MV, Kagei K, Nishioka T, Hashimoto S, Fujita K, Aoyama H, Tsuchiya K, Kudo K, Miyasaka K (2000) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48(4):1187–1195CrossRefPubMedGoogle Scholar
  23. 23.
    Bell MAL, Byram BC, Harris EJ, Evans PM, Bamber JC (2012) In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe. Phys Med Biol 57:1359–1374CrossRefPubMedGoogle Scholar
  24. 24.
    Fayad H, Pan T, Clément J‑F, Visvikis D (2011) Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks. Med Phys 38:3157–3164CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Radiation Oncology, University Medical Center MannheimUniversity of HeidelbergMannheimGermany
  2. 2.Department of Biomathematics and Medical Statistics, University Medical Center MannheimUniversity of HeidelbergMannheimGermany
  3. 3.Struttura Complessa di Radioterapia, Dipartimento di OncologiaAz. Ospedaliero-Universitaria di ModenaModenaItaly

Personalised recommendations