Strahlentherapie und Onkologie

, Volume 192, Issue 12, pp 875–885 | Cite as

Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer

Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy
  • Cédric Panje
  • Nikolaus Andratschke
  • Thomas B. Brunner
  • Maximilian Niyazi
  • Matthias GuckenbergerEmail author
Review Article



This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer.


A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation.


Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities.


SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT.


Stereotactic body radiotherapy Pancreatic cancer Renal cell cancer Pancreatic SBRT Renal SBRT 

Körperstereotaxie beim Nierenzell- und Pankreaskarzinom

Literaturüberblick und Praxisempfehlungen der DEGRO‐Arbeitsgruppe „Stereotaktische Radiotherapie“



Die Arbeitsgruppe „Stereotaktische Radiotherapie“ der Deutschen Gesellschaft für Radioonkologie (DEGRO) legt eine Zusammenfassung der aktuellen Literatur und daraus resultierende Empfehlungen zur Durchführung der stereotaktischen Strahlentherapie (SBRT) beim Nierenzellkarzinom und beim Pankreaskarzinom vor.


Es erfolgte eine Literaturrecherche zur Evidenz der SBRT beim Nierenzell- und Pankreaskarzinom, wobei der Schwerpunkt auf prospektive Studien und technische Aspekte für die klinische Umsetzung gelegt wurde.


Für die SBRT beim Pankreaskarzinom und Nierenzellkarzinom sind bisher nur wenige Studien veröffentlicht worden, die jedoch konsistent eine hohe Rate an lokaler Tumorkontrolle berichten. Für das Pankreaskarzinom sollten fraktionierte Schemata einer einzeitigen Stereotaxie bevorzugt werden, um die gastrointestinale Toxizität zu reduzieren. Für beide Tumorentitäten sind Strategien zur Bewegungskompensation und bildgeführte Strahlentherapie für die sichere Durchführung der Behandlung zwingend notwendig.


Die SBRT zur Behandlung des Pankreaskarzinoms und des Nierenzellkarzinoms ist erfolgreich in Phase-I/II-Studien durchgeführt worden. Pankreas-SBRT sollte aktuell nur in prospektiven Studienprotokollen praktiziert werden, da ein potentielles Risiko für schwerwiegende gastrointestinale Nebenwirkungen besteht. Für das Nierenzellkarzinom stellt die SBRT eine Behandlungsoption für inoperable Patienten dar, wobei insbesondere die optimale Patientenselektion und technische Aspekte in zukünftigen Studien untersucht werden sollten.


Körperstereotaxie Pankreaskarzinom Nierenzellkarzinom Pankreas-SBRT Nieren-SBRT 


Compliance with ethical guidelines

Conflict of interest

Cédric Panje, N. Andratschke, T.B. Brunner, M. Niyazi, and M. Guckenberger declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Timmerman RD, Herman J, Cho LC (2014) Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J Clin Oncol 32:2847–2854. doi: 10.1200/JCO.2014.55.4675 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190:26–33. doi: 10.1007/s00066-013-0450-y CrossRefPubMedGoogle Scholar
  3. 3.
    Sterzing F, Brunner TB, Ernst I et al (2014) Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190:872–881. doi: 10.1007/s00066-014-0714-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Stieb S, Lang S, Linsenmeier C et al (2015) Safety of high-dose-rate stereotactic body radiotherapy. Radiat Oncol 10:27. doi: 10.1186/s13014-014-0317-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hanson PW, Elaimy AL, Lamoreaux WT et al (2012) A concise review of the efficacy of stereotactic radiosurgery in the management of melanoma and renal cell carcinoma brain metastases. World J Surg Oncol 10:176. doi: 10.1186/1477-7819-10-176 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373:1119–1132. doi: 10.1016/S0140-6736(09)60229-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Escudier B, Porta C, Schmidinger M et al (2014) Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii49–iii56. doi: 10.1093/annonc/mdu259 CrossRefPubMedGoogle Scholar
  8. 8.
    Flanigan RC, Mickisch G, Sylvester R et al (2004) Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol 171:1071–1076. doi: 10.1097/ CrossRefPubMedGoogle Scholar
  9. 9.
    Blanco AI, Teh BS, Amato RJ (2011) Role of radiation therapy in the management of renal cell cancer. Cancers (Basel) 3:4010–4023. doi: 10.3390/cancers3044010 CrossRefGoogle Scholar
  10. 10.
    Stein M, Kuten A, Halpern J et al (1992) The value of postoperative irradiation in renal cell cancer. Radiother Oncol 24:41–44CrossRefPubMedGoogle Scholar
  11. 11.
    Kao GD, Malkowicz SB, Whittington R et al (1994) Locally advanced renal cell carcinoma: low complication rate and efficacy of postnephrectomy radiation therapy planned with CT. Radiology 193:725–730. doi: 10.1148/radiology.193.3.7972814 CrossRefPubMedGoogle Scholar
  12. 12.
    Rades D, Heisterkamp C, Schild SE (2010) Do patients receiving whole-brain radiotherapy for brain metastases from renal cell carcinoma benefit from escalation of the radiation dose? Int J Radiat Oncol Biol Phys 78:398–403. doi: 10.1016/j.ijrobp.2009.08.022 CrossRefPubMedGoogle Scholar
  13. 13.
    Wilson D, Hiller L, Gray L et al (2003) The effect of biological effective dose on time to symptom progression in metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol) 15:400–407CrossRefGoogle Scholar
  14. 14.
    De Meerleer G, Khoo V, Escudier B et al (2014) Radiotherapy for renal-cell carcinoma. Lancet Oncol 15:e170–e177. doi: 10.1016/S1470-2045(13)70569-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Kothari G, Foroudi F, Gill S et al (2015) Outcomes of stereotactic radiotherapy for cranial and extracranial metastatic renal cell carcinoma: A systematic review. Acta Oncol (Madr) 54:148–157. doi: 10.3109/0284186X.2014.939298 CrossRefGoogle Scholar
  16. 16.
    Onishi H, Kawasaki T, Zakoji H et al (2014) Renal cell carcinoma treated with stereotactic radiotherapy with histological change confirmed on autopsy: a case report. BMC Res Notes 7:270. doi: 10.1186/1756-0500-7-270 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Staehler M, Bader M, Schlenker B et al (2015) Single fraction radiosurgery for the treatment of renal tumors. J Urol 193:771–775. doi: 10.1016/j.juro.2014.08.044 CrossRefPubMedGoogle Scholar
  18. 18.
    Siva S, Pham D, Gill S et al (2012) A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int 110:E737–E743. doi: 10.1111/j.1464-410X.2012.11550.x CrossRefPubMedGoogle Scholar
  19. 19.
    Kaplan ID, Redrosa I, Martin C et al (2010) Results of a phase I dose escalation study of stereotactic radiosurgery for primary renal tumors. Int J Radiat Oncol 78:S191. doi: 10.1016/j.ijrobp.2010.07.464 CrossRefGoogle Scholar
  20. 20.
    Pham D, Thompson A, Kron T et al (2014) Stereotactic ablative body radiation therapy for primary kidney cancer: a 3‑dimensional conformal technique associated with low rates of early toxicity. Int J Radiat Oncol Biol Phys 90:1061–1068. doi: 10.1016/j.ijrobp.2014.07.043 CrossRefPubMedGoogle Scholar
  21. 21.
    Siva S, Jackson P, Kron T et al (2016) Impact of stereotactic radiotherapy on kidney function in primary renal cell carcinoma: Establishing a dose-response relationship. Radiother Oncol 118:540–546. doi: 10.1016/j.radonc.2016.01.027 CrossRefPubMedGoogle Scholar
  22. 22.
    Ponsky L, Lo SS, Zhang Y et al (2015) Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol 117:183–187. doi: 10.1016/j.radonc.2015.08.030 CrossRefPubMedGoogle Scholar
  23. 23.
    Svedman C, Sandström P, Pisa P et al (2006) A prospective Phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol 45:870–875. doi: 10.1080/02841860600954875 CrossRefPubMedGoogle Scholar
  24. 24.
    Beitler JJ, Makara D, Silverman P, Lederman G (2004) Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am J Clin Oncol 27:646–648CrossRefPubMedGoogle Scholar
  25. 25.
    Wersäll PJ, Blomgren H, Lax I et al (2005) Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother Oncol 77:88–95. doi: 10.1016/j.radonc.2005.03.022 CrossRefPubMedGoogle Scholar
  26. 26.
    Gilson B, Lederman G, Qian G et al (2006) Hypo-Fractionated Stereotactic extra-cranial Radiosurgery(HFSR) for primary and metastatic renal cell carcinoma. Int J Radiat Oncol 66:S349. doi: 10.1016/j.ijrobp.2006.07.656 CrossRefGoogle Scholar
  27. 27.
    Svedman C, Karlsson K, Rutkowska E et al (2008) Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol 47:1578–1583. doi: 10.1080/02841860802123196 CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Y‑J, Han T‑T, Xue J‑X et al (2014) Stereotactic gamma-ray body radiation therapy for asynchronous bilateral renal cell carcinoma. Radiol Med 119:878–883. doi: 10.1007/s11547-014-0402-3 CrossRefPubMedGoogle Scholar
  29. 29.
    Sankineni S, Brown A, Cieciera M et al (2015) Imaging of renal cell carcinoma. Urol Oncol. doi: 10.1016/j.urolonc.2015.05.020 Google Scholar
  30. 30.
    Siva S, Ellis RJ, Ponsky L et al (2016) Consensus statement from the International Radiosurgery Oncology Consortium for Kidney for primary renal cell carcinoma. Future Oncol 12:637–645. doi: 10.2217/fon.16.2 CrossRefPubMedGoogle Scholar
  31. 31.
    Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7:44–54. doi: 10.1038/nrclinonc.2009.188 CrossRefPubMedGoogle Scholar
  32. 32.
    Siva S, Pham D, Gill S et al (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248. doi: 10.1186/1748-717X-8-248 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pham D, Kron T, Foroudi F, Siva S (2013) Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: a case study. Med Dosim 38:304–308. doi: 10.1016/j.meddos.2013.03.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Valakh V, Chan P, D’Adamo K, Micaily B (2013) Early-stage central lung cancer and volumetric modulated arc therapy: a dosimetric case study with literature review. Anticancer Res 33:4491–4495PubMedGoogle Scholar
  35. 35.
    Ning S, Trisler K, Wessels BW, Knox SJ (1997) Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in vitro and in vivo in human renal cell carcinoma xenografts. Cancer 80:2519–2528CrossRefPubMedGoogle Scholar
  36. 36.
    Schanne DH, Nestle U, Allgäuer M et al (2015) Stereotactic body radiotherapy for centrally located stage I NSCLC: a multicenter analysis. Strahlenther Onkol 191:125–132. doi: 10.1007/s00066-014-0739-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. doi: 10.1056/NEJMoa1510665 PubMedCentralGoogle Scholar
  38. 38.
    Victor CT-S, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377. doi: 10.1038/nature14292 CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. doi: 10.3322/caac.21254 CrossRefPubMedGoogle Scholar
  40. 40.
    Krejs GJ (2010) Pancreatic cancer: epidemiology and risk factors. Dig Dis 28:355–358. doi: 10.1159/000319414 CrossRefPubMedGoogle Scholar
  41. 41.
    Vincent A, Herman J, Schulick R et al (2011) Pancreatic cancer. Lancet 378:607–620. doi: 10.1016/S0140-6736(10)62307-0 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huguet F, Mukherjee S, Javle M (2014) Locally advanced pancreatic cancer: the role of definitive chemoradiotherapy. Clin Oncol (R Coll Radiol) 26:560–568. doi: 10.1016/j.clon.2014.06.002 CrossRefGoogle Scholar
  43. 43.
    Iacobuzio-Donahue CA, Fu B, Yachida S et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 27:1806–1813. doi: 10.1200/JCO.2008.17.7188 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huguet F, André T, Hammel P et al (2007) Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J Clin Oncol 25:326–331. doi: 10.1200/JCO.2006.07.5663 CrossRefPubMedGoogle Scholar
  45. 45.
    Ben-Josef E, Schipper M, Francis IR et al (2012) A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 84:1166–1171. doi: 10.1016/j.ijrobp.2012.02.051 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Murphy JD, Adusumilli S, Griffith KA et al (2007) Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 68:801–808. doi: 10.1016/j.ijrobp.2006.12.053 CrossRefPubMedGoogle Scholar
  47. 47.
    Hammel P, Huguet F, van Laethem J‑L et al (2016) Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of Gemcitabine with or without Erlotinib: the LAP07 randomized clinical trial. JAMA 315:1844–1853. doi: 10.1001/jama.2016.4324 CrossRefPubMedGoogle Scholar
  48. 48.
    Wei Q, Yu W, Rosati LM, Herman JM (2015) Advances of stereotactic body radiotherapy in pancreatic cancer. Chin J Cancer Res 27:349–357. doi: 10.3978/j.issn.1000-9604.2015.04.12 PubMedPubMedCentralGoogle Scholar
  49. 49.
    Wild AT, Herman JM, Dholakia AS et al (2016) Lymphocyte-sparing effect of stereotactic body radiation therapy in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 94:571–579. doi: 10.1016/j.ijrobp.2015.11.026 CrossRefPubMedGoogle Scholar
  50. 50.
    Koong AC, Le QT, Ho A et al (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 58:1017–1021. doi: 10.1016/j.ijrobp.2003.11.004 CrossRefPubMedGoogle Scholar
  51. 51.
    Koong AC, Christofferson E, Le Q‑T et al (2005) Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 63:320–323. doi: 10.1016/j.ijrobp.2005.07.002 CrossRefPubMedGoogle Scholar
  52. 52.
    Schellenberg D, Goodman KA, Lee F et al (2008) Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 72:678–686. doi: 10.1016/j.ijrobp.2008.01.051 CrossRefPubMedGoogle Scholar
  53. 53.
    Schellenberg D, Kim J, Christman-Skieller C et al (2011) Single-fraction stereotactic body radiation therapy and sequential gemcitabine for the treatment of locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 81:181–188. doi: 10.1016/j.ijrobp.2010.05.006 CrossRefPubMedGoogle Scholar
  54. 54.
    Hoyer M, Roed H, Sengelov L et al (2005) Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol 76:48–53. doi: 10.1016/j.radonc.2004.12.022 CrossRefPubMedGoogle Scholar
  55. 55.
    Herman JM, Chang DT, Goodman KA et al (2015) Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 121:1128–1137. doi: 10.1002/cncr.29161 CrossRefPubMedGoogle Scholar
  56. 56.
    Comito T, Cozzi L, Clerici E et al (2016) Can stereotactic body radiation therapy be a viable and efficient therapeutic option for unresectable locally advanced pancreatic adenocarcinoma? Results of a phase 2 study. Technol Cancer Res Treat. doi: 10.1177/1533034616650778 PubMedGoogle Scholar
  57. 57.
    Rwigema J‑CM, Parikh SD, Heron DE et al (2011) Stereotactic body radiotherapy in the treatment of advanced adenocarcinoma of the pancreas. Am J Clin Oncol 34:63–69. doi: 10.1097/COC.0b013e3181d270b4 CrossRefPubMedGoogle Scholar
  58. 58.
    Chang DT, Schellenberg D, Shen J et al (2009) Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 115:665–672. doi: 10.1002/cncr.24059 CrossRefPubMedGoogle Scholar
  59. 59.
    Mahadevan A, Miksad R, Goldstein M et al (2011) Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys 81:e615–e622. doi: 10.1016/j.ijrobp.2011.04.045 CrossRefPubMedGoogle Scholar
  60. 60.
    Moningi S, Dholakia AS, Raman SP et al (2015) The role of stereotactic body radiation therapy for pancreatic cancer: A single-institution experience. Ann Surg Oncol 22:2352–2358. doi: 10.1245/s10434-014-4274-5 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pollom EL, Alagappan M, von Eyben R et al (2014) Single- versus multifraction stereotactic body radiation therapy for pancreatic adenocarcinoma: outcomes and toxicity. Int J Radiat Oncol Biol Phys 90:918–925. doi: 10.1016/j.ijrobp.2014.06.066 CrossRefPubMedGoogle Scholar
  62. 62.
    Chuong MD, Springett GM, Freilich JM et al (2013) Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys 86:516–522. doi: 10.1016/j.ijrobp.2013.02.022 CrossRefPubMedGoogle Scholar
  63. 63.
    Rajagopalan MS, Heron DE, Wegner RE et al (2013) Pathologic response with neoadjuvant chemotherapy and stereotactic body radiotherapy for borderline resectable and locally-advanced pancreatic cancer. Radiat Oncol 8:254. doi: 10.1186/1748-717X-8-254 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rwigema J‑CM, Heron DE, Parikh SD et al (2012) Adjuvant stereotactic body radiotherapy for resected pancreatic adenocarcinoma with close or positive margins. J Gastrointest Cancer 43:70–76. doi: 10.1007/s12029-010-9203-7 CrossRefPubMedGoogle Scholar
  65. 65.
    Wild AT, Hiniker SM, Chang DT et al (2013) Re-irradiation with stereotactic body radiation therapy as a novel treatment option for isolated local recurrence of pancreatic cancer after multimodality therapy: experience from two institutions. J Gastrointest Oncol 4:343–351. doi: 10.3978/j.issn.2078-6891.2013.044 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gurka MK, Collins SP, Slack R et al (2013) Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: a pilot trial demonstrating safety. Radiat Oncol 8:44. doi: 10.1186/1748-717X-8-44 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Brunner TB, Nestle U, Grosu A‑L, Partridge M (2015) SBRT in pancreatic cancer: what is the therapeutic window? Radiother Oncol 114:109–116. doi: 10.1016/j.radonc.2014.10.015 CrossRefPubMedGoogle Scholar
  68. 68.
    Minn AY, Schellenberg D, Maxim P et al (2009) Pancreatic tumor motion on a single planning 4D-CT does not correlate with intrafraction tumor motion during treatment. Am J Clin Oncol 32:364–368. doi: 10.1097/COC.0b013e31818da9e0 CrossRefPubMedGoogle Scholar
  69. 69.
    Ge J, Santanam L, Noel C, Parikh PJ (2013) Planning 4‑Dimensional Computed Tomography (4DCT) Ccnnot adequately represent daily intrafractional motion of abdominal tumors. Int J Radiat Oncol 85:999–1005. doi: 10.1016/j.ijrobp.2012.09.014 CrossRefGoogle Scholar
  70. 70.
    Heerkens HD, van Vulpen M, van den Berg CAT et al (2014) MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer. Radiother Oncol 111:252–257. doi: 10.1016/j.radonc.2014.03.002 CrossRefPubMedGoogle Scholar
  71. 71.
    Dalah E, Moraru I, Paulson E et al (2014) Variability of target and normal structure delineation using multimodality imaging for radiation therapy of pancreatic cancer. Int J Radiat Oncol Biol Phys 89:633–640. doi: 10.1016/j.ijrobp.2014.02.035 CrossRefPubMedGoogle Scholar
  72. 72.
    Hall WA, Mikell JL, Mittal P et al (2013) Tumor size on abdominal MRI versus pathologic specimen in resected pancreatic adenocarcinoma: implications for radiation treatment planning. Int J Radiat Oncol Biol Phys 86:102–107. doi: 10.1016/j.ijrobp.2012.11.019 CrossRefPubMedGoogle Scholar
  73. 73.
    Mellon EA, Hoffe SE, Springett GM et al (2015) Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol 54:979–985. doi: 10.3109/0284186X.2015.1004367 CrossRefPubMedGoogle Scholar
  74. 74.
    Dholakia AS, Kumar R, Raman SP et al (2013) Mapping patterns of local recurrence after pancreaticoduodenectomy for pancreatic adenocarcinoma: a new approach to adjuvant radiation field design. Int J Radiat Oncol Biol Phys 87:1007–1015. doi: 10.1016/j.ijrobp.2013.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Conroy T, Desseigne F, Ychou M et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825. doi: 10.1056/NEJMoa1011923 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cédric Panje
    • 1
  • Nikolaus Andratschke
    • 1
  • Thomas B. Brunner
    • 2
  • Maximilian Niyazi
    • 3
  • Matthias Guckenberger
    • 1
    Email author
  1. 1.Department of Radiation OncologyZurich University HospitalZurichSwitzerland
  2. 2.Department of Radiation OncologyFreiburg University HospitalFreiburgGermany
  3. 3.Department of Radiation OncologyUniversity of MunichMunichGermany

Personalised recommendations