Strahlentherapie und Onkologie

, Volume 192, Issue 9, pp 624–631 | Cite as

Does mean heart dose sufficiently reflect coronary artery exposure in left-sided breast cancer radiotherapy?

Influence of respiratory gating
  • Martina Becker-SchiebeEmail author
  • Maxi Stockhammer
  • Wolfgang Hoffmann
  • Fabian Wetzel
  • Heiko Franz
Original Article



With extensive use of systemic treatment, the issue of cardiac mortality after breast cancer radiation (RT) is still important. The aim of our analysis was to clarify whether the dose to one surrogate parameter (e. g., mean heart dose, as used in most studies) reflects the dose to the other cardiovascular structures especially the left anterior descending artery depending on breathing-adapted RT.

Patients and methods

A total of 130 patients who underwent adjuvant RT (50.4 Gy plus boost 9–16 Gy) were evaluated. In all, 71 patients were treated with free-breathing and 59 patients using respiratory monitoring (gated RT). Dosimetric associations were calculated.


The mean dose to the heart (Dmean heart) was reduced from 2.7 (0.8–5.2) Gy to 2.4 (1.1–4.6) Gy, the Dmean LAD (left anterior descending artery) decreased from 11.1 (1.3–28.6) Gy to 9.3 (2.2–19.9) Gy with gated RT (p = 0.04). A significant relationship was shown for Dmean heart–Dmean LAD, V25heart–Dmean LAD and Dmax heart–Dmax LAD for gated patients only (p < 0.01). For every 1 Gy increase in Dmean heart, mean LAD doses rose by 3.6 Gy, without gating V25 ≤5 % did not assure a benefit and resulted in Dmean LAD between 1.3 and 28.6 Gy.


A significant reduction and association of heart and coronary artery (LAD) doses using inspiratory gating was shown. However, in free-breathing plans commonly measured dose constraints do not allow precise estimation of the dose to the coronary arteries.


Adverse effects Myocardial ischemia Adjuvant radiotherapy Cardiac toxicity Breast-conserving therapy 

Spiegelt die mittlere Herzdosis im Rahmen der Radiotherapie beim linksseitigen Mammakarzinom die Dosisbelastung der Koronararterien ausreichend wider?

Einfluss der Atemtriggerung



Das Risiko kardialer Spätfolgen nach Bestrahlung (RT) eines Mammakarzinoms spielt insbesondere auch aufgrund der zunehmenden systemischen Begleittherapien eine wichtige Rolle. Unklar ist, welche koronaren und/oder myokardialen Mechanismen hier entscheidend sind. Der Einfluss der Atemtriggerung und der daraus resultierenden geometrischen Lagevariabilität der Risikoorgane auf die Dosisverteilung am Herzen/Koronarien sollte geprüft werden, um zu klären, inwieweit die mittlere Herzdosis ein ausreichender Surrogatparameter für die Dosisbelastung der Koronarien ist.

Patienten und Methoden

Ausgewertet wurden 130 Patientinnen mit Mammakarzinom, die mit einer adjuvanten RT (50,4 Gy + Boost 9–16 Gy) bestrahlt wurden. Hiervon wurden 71 Patientinnen in freier Atmung und 59 Patientinnen inspiratorisch atemgetriggert bestrahlt. Des Weiteren wurde die kardiale/koronare Dosisbelastung mit und ohne Atemtriggerung verglichen.


Die mittlere Herdosis (Dmean Herz) wurde durch Atemtriggerung von 2,7 Gy (Spanne 0,8–5,2 Gy) auf 2,4 Gy (Spanne 1,1–4,6 Gy) reduziert. Die mittlere LAD-Dosis („left anterior descending artery“, Ramus interventricularis anterior, RIVA) nahm mit Atemtriggerung von 11,1 Gy (Spanne 1,3–28,6 Gy) auf 9,3 Gy (Spanne 2,2–19,9 Gy) ab (p = 0,04). Die Dosisparameter Dmean Herz – Dmean LAD, V25 Herz – Dmean LAD und Dmax Herz – Dmax LAD waren nur für atemgetriggerte Fälle signifikant korrelierbar (p < 0,01), mit einem durchschnittlichen Anstieg der mittleren LAD-Dosis von 3,6 Gy pro 1 Gy mittlere Herzdosis. Bei einer nicht-atemgetriggerten RT lagen die mittleren LAD-Dosen zwischen 1,3 und 28,6 Gy trotz V25 ≤5 %.


Unter Einsatz einer atemgetriggerten Bestrahlungstechnik lassen sich sowohl die mittlere Herz- als auch die LAD-Dosis senken und die kardialen Dosisparameter miteinander korrelieren. Für die RT ohne Atemtriggerung lässt sich die LAD-Belastung jedoch nicht sicher abschätzen.


Nebenwirkungen Myokardiale Ischämie Adjuvante Radiotherapie Kardiale Toxizität Brusterhaltende Therapie 


Compliance with ethical guidelines

Conflict of interest

M. Becker-Schiebe, M. Stockhammer, W. Hoffmann, F. Wetzel, and H. Franz declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Fisher B, Anderson S, Bryant J et al (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241CrossRefPubMedGoogle Scholar
  2. 2.
    Clarke M, Collins R, Darby S et al (2005) Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106CrossRefPubMedGoogle Scholar
  3. 3.
    Taylor C, Nisbet A, McGale P et al (2009) Cardiac doses from Swedish breast cancer radiotherapy since the 1950s. Radiother Oncol 90:127–135CrossRefPubMedGoogle Scholar
  4. 4.
    Doyle J, Neugut A, Jacobsen S et al (2007) Radiation therapy, cardiac risk factors and cardiac toxicity in early-stage breast cancer patients. Int J Radiat Oncol Biol Phys 68:82–93CrossRefPubMedGoogle Scholar
  5. 5.
    Budach W, Bölke E, Kammers K et al (2015) Adjuvant radiation therapy of regional lymph nodes in breast cancer – a meta-analysis of randomized trials – an update. Radiat Oncol 10(1):258CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Korreman S, Pedersen A, Aarup L et al (2006) Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 65:1375–1380CrossRefPubMedGoogle Scholar
  7. 7.
    Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998CrossRefPubMedGoogle Scholar
  8. 8.
    Schultz-Hector S, Trott KR (2007) Radiation induced cardiovascular diseases: Is the epidemiologic evidence compatible with the radiobiological data? Int J Radiat Oncol Biol Phys 67:10–18CrossRefPubMedGoogle Scholar
  9. 9.
    Yeung R, Long K, Walrath D et al (2014) Evaluation of cardiac dose reduction with deep inspiration breath hold in patients with left-sided breast cancer receiving adjuvant radiotherapy. J Clin Oncol 32(5s):1096Google Scholar
  10. 10.
    Feng M, Moran JM, Koelling T et al (2011) Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys 79(1):10–18. doi:10.1016/j.ijrobp.2009.10.058CrossRefPubMedGoogle Scholar
  11. 11.
    Beck R, Lim L, Yue N et al (2014) Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast conserving surgery and radiation therapy: a review. Front Oncol doi:10.3389/fonc.2014.00327PubMedPubMedCentralGoogle Scholar
  12. 12.
    Marks LB, Yorke ED, Jackson A et al (2010) Quantitative analysis of normal tissue effects in the clinic updated guidelines. Int J Radiat Oncol Biol Phys 76(3):10–19. doi:10.1016/j.ijrobp.2009.07.1754CrossRefGoogle Scholar
  13. 13.
    Lorenzen EL, Taylor CW, Maraldo M et al (2013) Inter-observer variation in delineation of the heart and left anterior descending coronary artery in radiotherapy for breast cancer: a multi-centre study from Denmark and the UK. Radiother Oncol 108(2):254–258CrossRefPubMedGoogle Scholar
  14. 14.
    Nielsen MH, Berg M, Pedersen AN et al (2013) Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: national guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group. Acta Oncol 52(4):703–710CrossRefPubMedGoogle Scholar
  15. 15.
    Moorthy S, Sakr H, Hasan S et al (2013) Dosimetric study of SIB-IMRT versus SIM-3DCRT for breast cancer with breath-hold gated technique. Int J Cancer Ther Oncol 1(1):010110Google Scholar
  16. 16.
    Fung E, Hendry J (2013) External beam radiotherapy (EBRT) techniques used in breast cancer treatment to reduce cardiac exposure. Radiography 19:73–78CrossRefGoogle Scholar
  17. 17.
    Smyth LM, Knight KA, Aarons YK, Wasiak J (2015) The cardiac dose-sparing benefits of deep inspiration breath-hold in left breast irradiation: a systematic review. J Med Radiat Sci 62(1):66–73CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sardaro A, Petruzzelli MF, D’Errico MP et al (2012) Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother Oncol 103:133–142CrossRefPubMedGoogle Scholar
  19. 19.
    Swanson T, Grills IS, Ye H et al (2013) Six-year experience routinely using moderate deep inspiration breath-hold for the reduction of cardiac dose in left-sided breast irradiation for patients with early-stage or locally advanced breast cancer. Am J Clin Oncol 36:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hjelstuen MH, Mjaaland I, Vikstrom J, Dybvik KI (2012) Radiation during deep inspiration allows loco-regional treatment of left breast and axillary-, supraclavicular- and internal mammary lymph nodes without compromising target coverage or dose restrictions to organs at risk. Acta Oncol 51:333–344CrossRefPubMedGoogle Scholar
  21. 21.
    Qi XS, Hu A, Wang K, Newman F et al (2012) Respiration induced heart motion and indications of gated delivery for left-sided breast irradiation. Int J Radiat Oncol Biol Phys 82(5):1605–1611CrossRefPubMedGoogle Scholar
  22. 22.
    Evans SB, Panigrahi B, Northrup V et al (2013) Analysis of coronary artery dosimetry in the 3‑dimensional era: implications for organ-at-risk segmentation and dose tolerances in left-sided tangential breast radiation. Pract Radiat Oncol 3(2):e55–e60CrossRefPubMedGoogle Scholar
  23. 23.
    Correa CR, Litt HI, Hwang WT et al (2007) Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol 25(21):3031–3037CrossRefPubMedGoogle Scholar
  24. 24.
    Lind PA, Pagnanelli R, Marks LB et al (2003) Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution. Int J Radiat Oncol Biol Phys 55(4):914–920CrossRefPubMedGoogle Scholar
  25. 25.
    Correa CR, Das IJ, Litt HI et al (2008) Association between tangential beam treatment parameters and cardiac abnormalities after definitive radiation treatment for left-sided breast cancer. Int J Radiat Oncol Biol Phys 72(2):508–516CrossRefPubMedGoogle Scholar
  26. 26.
    Prosnitz R, Hubbs I, Evans E et al (2007) Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer 110:1840–1850CrossRefPubMedGoogle Scholar
  27. 27.
    Aznar MC, Korreman SS, Pedersen A et al (2011) Evaluation of dose to cardiac structures during breast irradiation. Br J Radiol 84(1004):743–746CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nilsson G, Holmberg L, Garmo H et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. Clin Oncol 30(4):380–386CrossRefGoogle Scholar
  29. 29.
    Zagar TM, Marks LB (2012) Breast cancer radiotherapy and coronary artery stenosis: location, location, location. J Clin Oncol 30(4):350–352CrossRefPubMedGoogle Scholar
  30. 30.
    Taylor CW, Povall JM, McGale P et al (2008) Cardiac dose from tangential breast cancer radiotherapy in the year 2006. Int J Radiat Oncol Biol Phys 72(2):501–507CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Radiotherapy and Radio-OncologyKlinikum BraunschweigBraunschweigGermany
  2. 2.Department of Gynecology and ObstetricsKlinikum BraunschweigBraunschweigGermany
  3. 3.Radiation OncologyHannover Medical SchoolHannoverGermany

Personalised recommendations