Strahlentherapie und Onkologie

, Volume 192, Issue 8, pp 582–588 | Cite as

The field size matters: low dose external beam radiotherapy for thumb carpometacarpal osteoarthritis

Importance of field size
  • Alexander Kaltenborn
  • Elke Bulling
  • Mirko Nitsche
  • Ulrich Martin Carl
  • Robert Michael HermannEmail author
Original Article


The purpose of this work was to evaluate the efficacy of low-dose radiotherapy (RT) for thumb carpometacarpal osteoarthritis (rhizarthrosis). The responses of 84 patients (n = 101 joints) were analyzed 3 months after therapy (n = 65) and at 12 months (n = 27). Patients were treated with 6 fractions of 1 Gy, two times a week, with a linear accelerator. At the end of therapy, about 70 % of patients reported a response (partial remission or complete remission), 3 months later about 60 %, and 1 year after treatment 70 %. In univariate regression analysis, higher patient age and field size greater than 6 × 4 cm were associated with response to treatment, while initial increase of pain under treatment was predictive for treatment failure. Duration of RT series (more than 18 days), gender, time of symptoms before RT, stress pain or rest pain, or prior ortheses use, injections, or surgery of the joint were not associated with treatment efficacy. In multivariate regression analysis, only field size and initial pain increase were highly correlated with treatment outcome. In conclusion, RT represents a useful treatment option for patients suffering from carpometacarpal osteoarthritis. In contrast to other benign indications, a larger field size (>6 × 4 cm) seems to be more effective than smaller fields and should be evaluated in further prospective studies.


Rhizarthrosis Carpometacarpal joints Treatment outcome Pain Hand 

Relevanz der Feldgröße in der Reizbestrahlung bei Rhizarthrose

Relevanz der Feldgröße


Wir analysierten den berichteten Therapieeffekt einer protrahiert fraktionierten Schmerzbestrahlung bei 84 Patienten (n = 101 Gelenke, Kontrolluntersuchungen nach 3 Monaten bei n = 65, nach 12 Monaten bei n = 27). Die Patienten wurden 2‑mal pro Woche mit 6 × 1 Gy an einem Linearbeschleuniger bestrahlt. Bei Abschluss der Behandlung gaben ca. 70 % der Patienten eine Verbesserung an (partielle oder komplette Remission), 3 Monate später ca. 60 % und ein Jahr nach der Behandlung 70 %. In der univariaten Regression waren ein höheres Patientenalter und eine Feldgröße über 6 × 4 cm mit einem Therapieansprechen assoziiert, während eine initiale Schmerzverstärkung mit einem Therapieversagen korreliert war. Länge der Therapieserie, Geschlecht, Dauer der Symptome vor Einleitung der Bestrahlung, Schmerzen unter Belastung oder in Ruhe oder vorherige Orthesenversorgung, Injektionen oder Operationen des Gelenks waren hingegen nicht mit dem Therapieerfolg korreliert. In der multivariaten Regression waren nur die Feldgröße und die initiale Schmerzverstärkung prädiktiv für das Therapieergebnis. Die Schmerzbestrahlung ist eine effektive Behandlungsoption für Patienten mit Rhizarthrose. Dabei scheint – im Gegensatz zu anderen benignen Bestrahlungsindikationen – eine Feldgröße über 6 × 4 cm effektiver zu sein als kleinere Felder. Dieser Befund sollte in prospektiven Studien weiter evaluiert werden.


Rhizarthrose Karpometakarpalgelenke Behandlungserfolg Schmerz Hand 


Compliance with ethical guidelines

Conflict of interest

A. Kaltenborn, E. Bulling, M. Nitsche, U.M. Carl, and R.M. Hermann state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.


  1. 1.
    Bakri K, Moran SL (2015) Thumb carpometacarpal arthritis. Plast Reconstr Surg 135:508–520CrossRefPubMedGoogle Scholar
  2. 2.
    Berger AJ, Meals RA (2015) Management of osteoarthrosis of the thumb joints. J Hand Surg Am 40:843–850CrossRefPubMedGoogle Scholar
  3. 3.
    Kaltenborn A, Gutcke A (2014) Trauma in elderly patients – relevance for military surgery. Wehrmed Monatsschr 58:413–415Google Scholar
  4. 4.
    Makris UE, Abrams RC, Gurland B (2014) Management of persistent pain in the older patient: a clinical review. JAMA 312:825–836CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grasshoff H (1970) Results of x‑ray therapy in arthrosis deformans. Dtsch Gesundheitsw 25:1838–1841PubMedGoogle Scholar
  6. 6.
    Rödel F, Kamprad F, Sauer R, Hildebrandt G, Sauer R (2002) Funktionelle und molekulare Aspekte der anti-inflammatorischen Wirkung niedrig dosierter Radiotherapie. Strahlenther Onkol 178:1–9CrossRefPubMedGoogle Scholar
  7. 7.
    Rödel F, Frey B, Gaipl US (2012) Modulation of Inflammatory Immune Reactions by Low-Dose Ionizing Radiation: Molecular Mechanisms and Clinical Application. Curr Med Chem 19:1741–1750CrossRefPubMedGoogle Scholar
  8. 8.
    Hildebrandt G, Maggiorella L, Rödel F (2002) Mononuclear cell adhesion and cell adhesion molecule liberation after X‑irradiation of activated endothelial cells in vitro. Int J Radiat Biol 78:315–325CrossRefPubMedGoogle Scholar
  9. 9.
    Hildebrandt G, Loppnow G, Jahns J (2003) Inhibition of the iNOS pathway in inflammatory macrophages by low-dose X‑irradiation in vitro. Strahlenther Onkol 179:158–166CrossRefPubMedGoogle Scholar
  10. 10.
    Niewald M, Seegenschmiedt MH, Micke O (2012) Randomized, Multicenter trial on the effect of radiation therapy on plantar Fasciitis (painful heel spur) comparing a standard dose with a very low dose: mature results after 12 months’ follow-up. Int J Radiat Oncol Biol Phys 84:e455–e462CrossRefPubMedGoogle Scholar
  11. 11.
    Heyd R, Tselis N, Ackermann H (2007) Radiation therapy for painful heel spurs. Strahlenther Onkol 183:3–9CrossRefPubMedGoogle Scholar
  12. 12.
    Ott OJ, Jeremias C, Gaipl US (2014) Radiotherapy for benign calcaneodynia: long-termin results of the Erlangen Dose Optimization (EDO) trial. Strahlenther Onkol 190:671–675CrossRefPubMedGoogle Scholar
  13. 13.
    Hermann RM, Meyer A, Becker A (2013) Effect of field size and length of plantar spur on treatment outcome in radiation therapy of plantar fasciitis/painful heel spur: the bigger the better? Int J Radiat Oncol Biol Phys 87:1122–1128CrossRefPubMedGoogle Scholar
  14. 14.
    Hosmer DW, Lemeshow S (2013) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  15. 15.
    Pannewitz G von (1933) Die Röntgentherapie der Arthritis deformans. Klinische und experimentelle Untersuchungen. Ergebn Med Strahlenforsch 6:62–126Google Scholar
  16. 16.
    Seegenschmiedt MH, Micke O, Muecke R (2015) Radiotherapy for non-malignant disorders: state of the art and update of the evidence-based practice guidelines. Br J Radiol. doi:10.1259/bjr.20150080PubMedCentralGoogle Scholar
  17. 17.
    Taylor RE, Hatfield P, McKeown SR (2015) Radiotherapy for benign disease: current evidence, benefits and risks. Clin Oncol (R Coll Radiol) 27:433–435CrossRefGoogle Scholar
  18. 18.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ott OJ, Niewald M, Weitmann HD (2015) DEGRO guidelines for the radiotherapy of non-malignant disorders. Part II: Painful degenerative skeletal disorders. Strahlenther Onkol 191:1–6CrossRefPubMedGoogle Scholar
  20. 20.
    Keilholz L, Seegenschmiedt MH, Sauer R (1998) Radiotherapy of degenerative joint disorders. indication, technique and clinical results. Strahlenther Onkol 174:243–250CrossRefPubMedGoogle Scholar
  21. 21.
    Ruppert R, Seegenschmiedt MH, Sauer R (2004) Radiotherapy of osteoarthritis. Indication, technique, and clinical results. Orthopade 33:56–62CrossRefPubMedGoogle Scholar
  22. 22.
    Schrems H (1951) Favorable and untoward results of roentgenotherapy in arthrosis deformans. Munch Med Wochenschr 93:785–791PubMedGoogle Scholar
  23. 23.
    Hess P, Bonmann KH (1955) Roentgen therapy of arthroses, spondyloses, periarthritis humeroscapularis and epiconsylitis. Strahlentherapie 96:75–81PubMedGoogle Scholar
  24. 24.
    Kuhns JG, Morrison SL (1946) Twelve years’ experience in roentgenotherapy for chronic arthritis. N Engl J Med 235:399–405CrossRefPubMedGoogle Scholar
  25. 25.
    Jansen JT, Broerse JJ, Zoetelief J (2005) Estimation of the carcinogenic risk of radiotherapy of benign diseases from shoulder to heel. Radiother Oncol 76:270–277CrossRefPubMedGoogle Scholar
  26. 26.
    Holland C, Jaeger L, Smentkowski U (2012) Septic and aseptic complications of corticosteroid injections: an assessment of 278 cases reviewed by expert commissions and mediation boards from 2005 to 2009. Dtsch Arztebl Int 109:425–430PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexander Kaltenborn
    • 1
    • 2
  • Elke Bulling
    • 3
  • Mirko Nitsche
    • 3
    • 4
  • Ulrich Martin Carl
    • 3
  • Robert Michael Hermann
    • 3
    • 5
    Email author
  1. 1.Department of Hand, Trauma and Orthopedic SurgeryFederal Armed Forces Hospital WesterstedeWesterstedeGermany
  2. 2.Core Facility Quality Management and Health Technology Assessment in Transplantation, Integrated Research and Treatment Center Transplantation (IFB-Tx)Hannover Medical SchoolHannoverGermany
  3. 3.Center for Radiotherapy and Radiooncology Bremen and WesterstedeWesterstedeGermany
  4. 4.Department of Radiotherapy, Karl-Lennert Cancer CenterUniversity of Schleswig Holstein, Campus KielKielGermany
  5. 5.Department of Radiotherapy and Special OncologyHannover Medical SchoolHannoverGermany

Personalised recommendations