Strahlentherapie und Onkologie

, Volume 192, Issue 5, pp 322–332 | Cite as

4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma

Determination of intra- and interfractional gastric motion
  • Gabriele ReinartzEmail author
  • Uwe Haverkamp
  • Ramona Wullenkord
  • Philipp Lehrich
  • Jan Kriz
  • Florian Büther
  • Klaus Schäfers
  • Michael Schäfers
  • Hans Theodor Eich
Original Article



New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach.


Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins)  plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed.


The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients.


IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.


Intensity-modulated radiotherapy Positron-emission tomography Gastric lymphoma 4D computed tomography Planning target volume margin Cone-beam computed tomography 

4D-Listmode-PET-CT und 4D-CT für die Optimierung des PTV-Sicherheitsabstandes bei Magenlymphomen

Erfassung der intra- und interfraktionellen Magenbewegung



Zur Optimierung des Sicherheitsabstandes beim Planungszielvolumen (PTV) und zur Erfassung der intra-/interfraktionellen Variation des Magens wurden neue Protokolle für die Bildverarbeitung in der Radiotherapie lokalisierter Magenlymphome evaluiert.


Die Bildgebung von 6 Patienten wurde prospektiv untersucht. Die Planung der intensitätsmodulierten Strahlentherapie (IMRT) basierte auf 4D-/3D-Bildgebung von Computertomographie (CT) und Positronenemissionstomographie-CT (PET-CT). Wir differenzierten zwischen „static“ und „motion“ Gesamttumorvolumen (sGTV, mGTV) unter Definition von GTV (leerer Magen), klinischem Zielvolumen (CTV= GTV + 5 mm Sicherheitsabstand), PTV (GTV + 10/15/20/25 mm Sicherheitsabstand)  plus  paraaortalen Lymphknoten (LK ) und  proximalem Duodenum. Die Überschneidung des 4D-Listmode-PET-basierten mCTV mit dem 3D-CT-basierten PTV (steigender Sicherheitssaum) und die V95/D95 des mCTV wurden evaluiert. Magenverschiebungen wurden im Online-Conebeam-CT bestimmt. Die Dosisverteilung für die Risikoorgane wurde berechnet.


Die 4D-Bilddaten zeigen die bemerkenswerte intra-/interfraktionelle Variation des Magens, insbesondere vertikal. Die konventionelle 3D-CT-Planung mit schrittweise zunehmenden PTV-Sicherheitsabständen von 10/15/20/25 mm resultierte in steigender Dosisversorgung des mCTV (4D-Listmode-PET-Summation-CT) und steigender D95 und V95 des mCTV. Bei 3 von 6 Patienten war ein PTV-Sicherheitsabstand von 15 mm ausreichend, bei 4 von 6 Patienten 20 mm und bei 5 von 6 Patienten 25 mm.


Die IMRT-Planung auf Basis von 4D-PET-CT/4D-CT mit der Online-Conebeam-CT kann die PTV-Sicherheitsabstände individualisieren und die Zielvolumenerfassung bei Magenlymphomen optimieren.


Intensitätsmodulierte Strahlentherapie Positronenemissionstomographie Magenlymphome 4-D-Computertomographie Sicherheitssaum Planungszielvolumen Conebeam-Computertomographie 



This study was partly supported by the Deutsche Forschungsgemeinschaft (DFG), Collaborative Research Centre 656 (SFB 656), Muenster, Germany (projects B02 and B03).

Compliance with ethical standards

Conflict of interest

G. Reinartz, U. Haverkamp, R. Wullenkord, P. Lehrich, J. Kriz, F. Büther, K. Schäfers, M. Schäfers, and H.T. Eich state that there are no conflicts of interest.


  1. 1.
    Fischbach W, Schramm S, Goebeler E (2011) Outcome and quality of life favour a conservative treatment of patients with primary gastric lymphoma. Z Gastroenterol 49:430–435CrossRefPubMedGoogle Scholar
  2. 2.
    Tsang RW, Gospodarowicz MK (2005) Radiation therapy for localized low-grade non-Hodgkinʼs lymphomas. Hematol Oncol 23:10–17CrossRefPubMedGoogle Scholar
  3. 3.
    Reinartz G, Willich N, Koch P (2002) Radiotherapy in patients with primary gastrointestinal lymphomas. Chir Gastroenterol 18:53–59CrossRefGoogle Scholar
  4. 4.
    Schechter NR, Portlock CS, Yahalom J (1998) Treatment of mucosa-associated lymphoid tissue lymphoma of the stomach with radiation alone. J Clin Oncol 16:1916–1921PubMedGoogle Scholar
  5. 5.
    Goda JS, Gospodarowicz MK, Pintilie M et al (2010) Long-term outcome in localized extranodal mucosa-associated lymphoid tissue lymphomas treated with radiotherapy. Cancer 116:3815–3824CrossRefPubMedGoogle Scholar
  6. 6.
    Doll C, Duncker-Rohr V, Rücker G et al (2014) Influence of experience and qualification on PET-based target volume delineation. Strahlenther Onkol 190:555–562CrossRefPubMedGoogle Scholar
  7. 7.
    Büther F, Ernst I, Dawood M et al (2010) Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 37:2315–2327CrossRefPubMedGoogle Scholar
  8. 8.
    Hüttenrauch P, Witt M, Wolff D et al (2014) Target volume coverage and dose to organs at risk in prostate cancer patients. Dose calculation on daily cone-beam CT data sets. Strahlenther Onkol 190:310–316CrossRefPubMedGoogle Scholar
  9. 9.
    Lee JA, Kim CY, Park YJ et al (2014) Interfractional variability in intensity-modulated radiotherapy of prostate cancer with or without thermoplastic pelvic immobilization. Strahlenther Onkol 190:94–99CrossRefPubMedGoogle Scholar
  10. 10.
    Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMedGoogle Scholar
  11. 11.
    Inoue T, Oh RJ, Shiomi H et al (2013) Stereotactic body radiotherapy for pulmonary metastases. Strahlenther Onkol 189:285–292CrossRefPubMedGoogle Scholar
  12. 12.
    Bundschuh RA, Andratschke N, Dinges J et al (2012) Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188:592–598CrossRefPubMedGoogle Scholar
  13. 13.
    Matoba M, Oota K, Toyoda I (2012) Usefulness of 4D-CT for radiation treatment planning of gastric MZBCL/MALT. J Radiat Res 53:333–337CrossRefPubMedGoogle Scholar
  14. 14.
    Roland T, Hales R, McNutt T et al (2012) A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy. Med Phys 39:195–205CrossRefPubMedGoogle Scholar
  15. 15.
    Watanabe M, Isobe K, Uno T et al (2011) Interfractional gastric motion and interfractional stomach deformity using CT images. J Radiat Res 52:660–665CrossRefPubMedGoogle Scholar
  16. 16.
    Wysocka B, Kassam Z, Lockwood G et al (2010) Interfraction and respiratory organ motion during conformal radiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 77:53–59CrossRefPubMedGoogle Scholar
  17. 17.
    Harris SL, Pan CC, Tepper JE (2014) Stomach, small and large intestines. In: Rubin P, Constine LS, Marks LB (Hrsg) ALERT-adverse late effects of cancer treatment. Volume 2: normal tissue specific sites and systems. Medical radiology, radiation oncology. Springer, Berlin, pp S353–S394CrossRefGoogle Scholar
  18. 18.
    Fukada J, Shigematsu N, Hanada T et al (2013) Inter- and Intrafraction Gastric Motion Study—impact of breathing and stomach filling [Abstract]. Int J Radiat Oncol Biol Phys 84:S318CrossRefGoogle Scholar
  19. 19.
    Jang JW, Brown JG, Mauch PM et al (2011) Four-dimensional CT planning for gastric MALT lymphoma [Abstract]. Int J Radiat Oncol Biol Phys 81:S629CrossRefGoogle Scholar
  20. 20.
    Della Biancia C, Hunt M, Furhang E et al (2005) Radiation treatment planning techniques for lymphoma of the stomach. Int J Radiat Oncol Biol Phys 62:745–751CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson ME, Pereira GC, El Naqa IM et al (2010) Assessment of PTV for whole stomach irradiation using daily megavoltage CT [Abstract]. Int J Radiat Oncol Biol Phys 78:S554CrossRefGoogle Scholar
  22. 22.
    Dabaja B, Wang H, Voong K et al (2013) Image guided radiation therapy proves its benefit in detecting the daily unpredictable shape change of the stomach: a study of patients treated for stomach lymphoma [Abstract]. Int J Radiat Oncol Biol Phys 87:S163Google Scholar
  23. 23.
    Murakami M, Nomiya T, Ohta I et al (2011) Considering PTV margins for stomach: inter and intrafractional gastric motion during radiation therapy [Abstract]. Int J Radiat Oncol Biol Phys 81:S632CrossRefGoogle Scholar
  24. 24.
    Toyoda T, Terahara A, Nakagawa K et al (2012) How much does field size become larger with interfractional computed tomography in treating gastric malignant lymphoma? [Abstract]. Int J Radiat Oncol Biol Phys 84:S771CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gabriele Reinartz
    • 1
    Email author
  • Uwe Haverkamp
    • 1
  • Ramona Wullenkord
    • 1
  • Philipp Lehrich
    • 1
  • Jan Kriz
    • 1
  • Florian Büther
    • 2
  • Klaus Schäfers
    • 2
    • 4
  • Michael Schäfers
    • 2
    • 3
    • 4
  • Hans Theodor Eich
    • 1
  1. 1.Department of Radiation OncologyUniversity Hospital MuensterMuensterGermany
  2. 2.European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
  3. 3.Department of Nuclear MedicineUniversity Hospital MuensterMuensterGermany
  4. 4.DFG EXC 1003, Cluster of Excellence ‘Cells in Motion’MuensterGermany

Personalised recommendations