Advertisement

Strahlentherapie und Onkologie

, Volume 192, Issue 2, pp 118–126 | Cite as

Scanned ion beam therapy for prostate carcinoma

Comparison of single plan treatment and daily plan-adapted treatment
  • Sebastian Hild
  • Christian Graeff
  • Antoni Rucinski
  • Klemens Zink
  • Gregor Habl
  • Marco Durante
  • Klaus Herfarth
  • Christoph BertEmail author
Original Article

Abstract

Background and purpose

Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy.

Materials and methods

Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7–2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions.

Results

All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95mean = 0.86, range 0.63–0.99) and IGRT (V95mean = 0.91, range 0.68–1.00), while ART maintained acceptable target coverage.

Conclusion

IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion.

Keywords

Intensity-modulated radiotherapy Radiotherapy planning, computer-assisted Prostatic neoplasm Organs at risk Image-guided radiotherapy 

Gescannte Ionenstrahltherapie beim Prostatakarzinom

Vergleich konventioneller und tagesaktueller Bestrahlungsplanung

Zusammenfassung

Hintergrund und Ziel

Adaptive Therapieansätze für sich interfraktionell bewegende Zielvolumina in der intensitätsmodulierten Partikeltherapie (IMPT) befinden sich zurzeit in der Entwicklung. In dieser Arbeit werden drei Behandlungsstrategien auf mögliche Vor- und Nachteile in der IMPT des Prostatakarzinoms hin untersucht.

Material und Methoden

Auf Basis eines anonymisierten Datensatzes aus 10 Patienten mit Prostatakarzinom wurden die drei Bestrahlungsstrategien, konventionelle Ein-Plan-Strahlentherapie (ConvRT), bildunterstützte Strahlentherapie (IGRT) und tagesaktuelle Strahlentherapie (adaptive radiotherapy,ART), simuliert. Jeder Datensatz besteht aus 6 Computertomogrammen (CT) in Planungsqualität, die jeweils im Abstand von einer Woche akquiriert wurden. Die Ergebnisse der Planungsstudie, die geometrische und patientenspezifische Definitionen der Zielvolumina in der IMPT vergleicht, wurden anhand der Zieldosis und der Dosisbelastung von Rektum, Hüftköpfen und Blase beurteilt.

Ergebnisse

Für Patienten mit kleiner Prostatabewegung (Mittelwert < 4 mm) führten alle untersuchten Behandlungsstrategien zu einer klinisch akzeptablen Dosis im Zielvolumen; IGRT und ART konnten die Rektumdosis signifikant senken. Bei 20% der Patienten überstieg die Prostatabewegung 4 mm. Dies führte zu unzureichender Dosisabdeckung des Zielvolumens für ConvRT (V95mean = 0,86; Spanne 0,63–0,99) und IGRT (V95mean = 0,91; Spanne 1,00–0,68), während ART die volle Zieldosis erreichte.

Schlussfolgerung

Schonung des Rektums ist eine der wichtigsten Gesichtspunkte in der IMPT des Prostatakarzinoms. Für Patienten mit großer Prostatabewegung sollten zusätzlich wirksame adaptive Strahlentherapieansätze, wie beispielsweise eine tägliche Neuplanung, gewählt werden, um die Abdeckung des Zielvolumens zu gewährleisten.

Schlüsselwörter

Intensitätsmodulierte Strahlentherapie Computerassisitierte Strahlentherapieplanung Prostataneoplasie Risikoorgane Bildgestützte Strahlentherapie 

Notes

Acknowledgments

This study was funded by the German Research Foundation (DFG), clinical research group (KFO) 214. The authors thank John Eley, Ph.D. for his valuable scientific suggestions and proofreading the manuscript. The present work was performed in (partial) fulfillment of the requirements for obtaining the degree “Dr. rer. biol. hum.”.

Compliance with ethics guidelines

Conflict of interest

S. Hild, C. Graeff, A. Rucinski, K. Zink, G. Habl, M. Durante, K. Herfarth, and C. Bert state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

References

  1. 1.
    van Herk M (2007) Different styles of image-guided radiotherapy. Semin Radiat Oncol 17:258–267PubMedCrossRefGoogle Scholar
  2. 2.
    Bert C, Rietzel E (2007) 4D treatment planning for scanned ion beams. Radiat Oncol 2:24PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zietman AL, DeSilvio ML, Slater JD et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294:1233–1239PubMedCrossRefGoogle Scholar
  4. 4.
    Ghilezan M, Yan D, Liang J et al (2004) Online image-guided intensity-modulated radiotherapy for prostate cancer: how much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys 60:1602–1610PubMedCrossRefGoogle Scholar
  5. 5.
    Someya M, Hori M, Tateoka K et al (2015) Results and DVH analysis of late rectal bleeding in patients treated with 3D-CRT or IMRT for localized prostate cancer. J Radiat Res 56:122–127PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Habl G, Hatiboglu G, Edler L et al (2014) Ion Prostate Irradiation (IPI)—a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique. BMC Cancer 14:202PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Shioyama Y, Tsuji H, Suefuji H et al (2015) Particle radiotherapy for prostate cancer. Int J Urol 22:33–39PubMedCrossRefGoogle Scholar
  8. 8.
    Nikoghosyan AV, Schulz-Ertner D, Herfarth K et al (2011) Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer—acute toxicity of 12C for PC. Acta Oncol 50:784–790PubMedCrossRefGoogle Scholar
  9. 9.
    Rucinski A, Brons S, Richter D et al (2015) Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel. Radiat Oncol 10:348CrossRefGoogle Scholar
  10. 10.
    Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383CrossRefGoogle Scholar
  11. 11.
    Fowler JF, Ritter MA, Chappell RJ et al (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104PubMedCrossRefGoogle Scholar
  12. 12.
    Ghilezan M, Jaffray D, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol 62:406–417CrossRefGoogle Scholar
  13. 13.
    Langen KM, Willoughby TR, Meeks SL et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71:1084–1090PubMedCrossRefGoogle Scholar
  14. 14.
    Peng C, Ahunbay E, Chen G et al (2011) Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 79:909–914PubMedCrossRefGoogle Scholar
  15. 15.
    Yan D, Lockman D, Brabbins D et al (2000) An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 48:289–302PubMedCrossRefGoogle Scholar
  16. 16.
    Graeff C, Durante M, Bert C (2012) Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys 39:6004–6013PubMedCrossRefGoogle Scholar
  17. 17.
    Ahunbay EE, Peng C, Holmes S et al (2010) Online adaptive replanning method for prostate radiotherapy. Int J Radiat Oncol Biol Phys 77:1561–1572PubMedCrossRefGoogle Scholar
  18. 18.
    Shimizu S, Osaka Y, Shinohara N et al (2011) Use of implanted markers and interportal adjustment with real-time tracking radiotherapy system to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys 81:e393–e399PubMedCrossRefGoogle Scholar
  19. 19.
    Tang S, Both S, Bentefour H et al (2012) Improvement of prostate treatment by anterior proton fields. Int J Radiat Oncol Biol Phys 83:408–418PubMedCrossRefGoogle Scholar
  20. 20.
    Hild S, Graeff C, Trautmann J et al (2014) Fast optimization and dose calculation in scanned ion beam therapy. Med Phys 41:071703PubMedCrossRefGoogle Scholar
  21. 21.
    Thieke C, Malsch U, Schlegel W et al (2006) Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 79:S79–S86PubMedCrossRefGoogle Scholar
  22. 22.
    O’Daniel JC, Dong L, Zhang L et al (2006) Dosimetric comparison of four target alignment methods for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 66:883–891PubMedCrossRefGoogle Scholar
  23. 23.
    Herk Mv, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135PubMedCrossRefGoogle Scholar
  24. 24.
    Wong JR, Gao Z, Uematsu M et al (2008) Interfractional prostate shifts: review of 1870 computed tomography (CT) scans obtained during image-guided radiotherapy using CT-on-rails for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 72:1396–1401PubMedCrossRefGoogle Scholar
  25. 25.
    Krämer M, Scholz M (2000) Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol 45:3319–3330PubMedCrossRefGoogle Scholar
  26. 26.
    Richter D, Schwarzkopf A, Trautmann J et al (2013) Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Med Phys 40:051722PubMedCrossRefGoogle Scholar
  27. 27.
    Scholz M, Kellerer AM, Kraft-Weyrather W et al (1997) Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys 36:59–66PubMedCrossRefGoogle Scholar
  28. 28.
    Horcicka M, Meyer C, Buschbacher A et al (2013) Algorithms for the optimization of RBE-weighted dose in particle therapy. Phys Med Biol 58:275–286PubMedCrossRefGoogle Scholar
  29. 29.
    Lawton CA, Michalski J, El-Naqa I et al (2009) RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 74:383–387PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gora J, Stock M, Lutgendorf-Caucig C et al (2013) Is there an advantage in designing adapted, patient-specific PTV margins in intensity modulated proton beam therapy for prostate cancer? Int J Radiat Oncol Biol Phys 85:881–888PubMedCrossRefGoogle Scholar
  31. 31.
    Susil RC, McNutt TR, DeWeese TL et al (2010) Effects of prostate-rectum separation on rectal dose from external beam radiotherapy. Int J Radiat Oncol Biol Phys 76:1251–1258PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Choi Y, Kwak DW, Lee HS et al (2015) Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy. J Med Imaging Radiat Oncol 59:236–242PubMedCrossRefGoogle Scholar
  33. 33.
    Wang KK, Vapiwala N, Bui V et al (2014) The impact of stool and gas volume on intrafraction prostate motion in patients undergoing radiotherapy with daily endorectal balloon. Radiother Oncol 112:89–94PubMedCrossRefGoogle Scholar
  34. 34.
    Chen W, Gemmel A, Rietzel E (2013) A patient-specific planning target volume used in ‘plan of the day’ adaptation for interfractional motion mitigation. J Radiat Res 54:i82–i90PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lettmaier S, Lotter M, Kreppner S et al (2012) Long term results of a prospective dose escalation phase-II trial: interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer. Radiother Oncol 104:181–186PubMedCrossRefGoogle Scholar
  36. 36.
    Lahmer G, Lotter M, Kreppner S et al (2013) Protocol-based image-guided salvage brachytherapy. Early results in patients with local failure of prostate cancer after radiation therapy. Strahlenther Onkol 189:668–674PubMedCrossRefGoogle Scholar
  37. 37.
    Badakhshi H, Graf R, Budach V et al (2015) Permanent interstitial low-dose-rate brachytherapy for patients with low risk prostate cancer: an interim analysis of 312 cases. Strahlenther Onkol 191:303–309PubMedCrossRefGoogle Scholar
  38. 38.
    Georg D, Hopfgartner J, Gora J et al (2014) Dosimetric considerations to determine the optimal technique for localized prostate cancer among external photon, proton, or carbon-ion therapy and high-dose-rate or low-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 88:715–722PubMedCrossRefGoogle Scholar
  39. 39.
    Grun R, Friedrich T, Kramer M et al (2015) Assessment of potential advantages of relevant ions for particle therapy: a model based study. Med Phys 42:1037–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Hild
    • 1
    • 2
  • Christian Graeff
    • 1
  • Antoni Rucinski
    • 3
    • 4
  • Klemens Zink
    • 5
    • 6
  • Gregor Habl
    • 3
    • 7
  • Marco Durante
    • 1
    • 8
  • Klaus Herfarth
    • 3
  • Christoph Bert
    • 1
    • 2
    • 9
    Email author
  1. 1.Department of BiophysicsGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  2. 2.Department of Radiation OncologyUniversity Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation OncologyUniversity Clinic HeidelbergHeidelbergGermany
  4. 4.INFN Sezione di Roma and Dipartimento di Scienze di Base e Applicate per IngegneriaSapienza Universit’a di RomaRomaItaly
  5. 5.Institute for Medical Physics and Radiation ProtectionUniversity of Applied SciencesGiessenGermany
  6. 6.Department of Radiotherapy and RadiooncologyUniversity Medical Center Giessen-MarburgMarburgGermany
  7. 7.Department of Radiation OncologyKlinikum rechts der Isar, Technische Universität München (TUM)MunichGermany
  8. 8.Faculty of PhysicsTechnische Universität DarmstadtDarmstadtGermany
  9. 9.Radiation OncologyUniversity Hospital ErlangenErlangenGermany

Personalised recommendations