Strahlentherapie und Onkologie

, Volume 191, Issue 1, pp 34–42 | Cite as

Coplanar VMAT vs. noncoplanar VMAT in the treatment of sinonasal cancer

  • Ning Zhong-Hua
  • Jiang Jing-Ting
  • Li Xiao-Dong
  • Mu Jin-Ming
  • Mo Jun-Chong
  • Jin Jian-Xue
  • Gao Ming
  • Li Qi-Lin
  • Gu Wen-Dong
  • Chen Lu-Jun
  • Pei Hong-LeiEmail author
Original article



Previous studies showed that noncoplanar intensity-modulated radiotherapy (NC-IMRT) for sinonasal cancer is superior to coplanar intensity-modulated radiotherapy (IMRT). Volumetric-modulated arc therapy (VMAT) is a newly introduced treatment modality, and the performance of noncoplanar VMAT for sinonasal cancer has not been well described to date.


To compare the dosimetry difference of noncoplanar VMAT (NC-VMAT), coplanar VMAT (co-VMAT), and NC-IMRT for sinonasal cancer.

Patients and methods

Ten postoperative patients with sinonasal cancer were randomly selected for planning with NC-VMAT, co-VMAT, and NC-IMRT. Two planning target volumes (PTVs) were contoured representing high-risk and low-risk regions set to receive a median absorbed dose (D50 %) of 68 Gy and 59 Gy, respectively. The homogeneity index (HI), conformity index (CI), dose-volume histograms (DVHs), and delivery efficiency were all evaluated.


Both NC-VMAT and co-VMAT showed superior dose homogeneity and conformity in PTVs compared with NC-IMRT. There was no significant difference between NC-VMAT and co-VMAT in PTV coverage. Both VMAT plans provided a better protection for organs at risk (OARs) than NC-IMRT plans, and NC-VMAT showed a small improvement over co-VMAT in sparing of OARs. For peripheral doses, the doses to breast, thyroid, and larynx in the NC-IMRT plans were significantly higher than those in both VMAT plans. Compared to NC-VMAT, co-VMAT significantly reduced peripheral doses. NC-VMAT and co-VMAT reduced the average delivery time by 63.2 and 64.2 %, respectively, in comparison with NC-IMRT. No differences in delivery efficiency were observed between the two VMAT plans.


Compared to NC-VMAT, co-VMAT showed similar PTV coverage and comparable OAR sparing but significantly reduced peripheral doses and positioning uncertainty. We propose to give priority to coplanar VMAT in the treatment of sinonasal cancer.


Sinonasal cancer Volumetric-modulated arc therapy Noncoplanar radiotherapy Dosage Treatment 

Koplanare VMAT vs. nichtkoplanare VMAT bei der Behandlung des sinunasalen Krebses



Frühere Studien zeigten, dass die nichtkoplanare intensive modulierte Radiotherapie (NC-IMRT) für den sinunasalen Krebs der koplanaren intensiven modulierten Radiotherapie (IMRT) überlegen ist. Kürzlich wurde die volumetrische modulierte Lichtbogentherapie als neue Behandlungsmethode eingeführt Außerdem wurde die Leistung der nichtkoplanaren VMAT für den sinunasalen Krebs noch nicht gut beschrieben.


Ziel der Studie war es, die Dosimetriedifferenz von nichtkoplanarer VMAT (NC-VMAT), koplanarer VMAT (co-VMAT) und NC-IMRT für sinunasalen Krebs zu vergleichen.

Material und Methoden

Zehn postoperative Patienten mit sinunasalem Krebs wurden zufällig ausgewählt und mit NC-VMAT, co-VMAT und NC-IMRT behandelt. Zwei Planungszielvolumen (PTVs), die hohen und niedrigen Risikoregionen entsprechen, wurden konturiert, um eine mittlere aufgenommene Dosis (D50 %) von 68 Gy und 59 Gy zu erhalten. Der Homogenitätsindex (HI) und der Konformitätsindex (CI), Dosis-Volumen-Histogramme (DVHs) sowie die Ausgangseffizienz wurden bewertet.


Im Vergleich mit NC-IMRT zeigten sowohl NC-VMAT als auch co-VMAT überlegene Dosishomogenität und Dosiskonformität bei den PTVs. Es gab keine offensichtliche Differenz zwischen NC-VMAT und co-VMAT in Bezug auf die Erfassung der PTVs. Beide VMAT-Pläne boten den Organen einen besseren Schutz vor Risiken (OARs) als NC-IMRT-Pläne. Übrigens zeigte NC-VMAT eine kleine Verbesserung für OARs im Vergleich mit co-VMAT. Die peripheren Dosen, die Dosis auf Brust, Schilddrüse und Kehlkopf, waren in den NC-IMRT-Plänen deutlich höher als in den beiden VMAT-Plänen. Im Vergleich zu NC-VMAT reduzierte co-VMAT deutlich die peripheren Dosen. NC-VMAT und co-VMAT reduzierten die durchschnittliche Ausgangszeit um 63,2% und 64,2 % im Vergleich zu NC-IMRT. Keine Unterschiede wurden zwischen beiden VMAT-Plänen hinsichtlich der Ausgangseffizienz beobachtet.


Im Vergleich zu NC-VMAT zeigte co-VMAT ähnliche PTVs-Erfassung und vergleichbare OARs, aber deutlich reduzierte periphere Dosen und eine Positionierungsunsicherheit. Wir schlagen vor, bei der Behandlung für sinunasalen Krebs der co-VMAT den Vorzug zu geben.


Sinunasaler Krebs Volumetrische modulierte Lichtbogentherapie Nichtkoplanare Radiotherapie Dosierung Behandlung 


Compliance with ethical guidelines


The authors thank Jianxue Jin and his colleagues from Elekta China Co Ltd. for advice and guidance. This research was supported by the Sanitation Bureau Guidance Project of Changzhou (WZ201303) and National Natural Science Foundation of China(81301960).

Conflict of interest

N. Zhong-Hua, J. Jing-Ting, L. Xiao-Dong, M. Jin-Ming, M. Jun-Chong, J. Jian-Xue, G. Ming, L. Qi-Lin, G. Wen-Dong, C. Lu-Jun, and P. Hong-Lei state that there are no conflicts of interest


  1. 1.
    Adams EJ, Nutting CM, Convery DJ et al (2001) Potential role of intensity-modulated radiotherapy in the treatment of tumors of the maxillary sinus. Int J Radiat Oncol Biol Phys 51:579–588PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Mamgani A, Monserez D, Rooij P et al (2012) Highly-conformal intensity-modulated radiotherapy reduced toxicity without jeopardizing outcome in patients with paranasal sinus cancer treated by surgery and radiotherapy or (chemo)radiation. Oral Oncol 48:905–911PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Mamgani A, Van Rooij P, Mehilal R et al (2013) Combined-modality treatment improved outcome in sinonasal undifferentiated carcinoma: single-institutional experience of 21 patients and review of the literature. Eur Arch Otorhinolaryngol 270:293–299PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Blanco AI, Chao KS, Ozyigit G et al (2004) Carcinoma of paranasal sinuses: long-term outcomes with radiotherapy. Int J Oncol Biol Phys 59:51–58CrossRefGoogle Scholar
  5. 5.
    Chen AM, Sreeraman R, Mathai M et al (2010) Potential of helical tomotherapy to reduce dose to the ocular structures for patients treated for unresectable sinonasal cancer. Am J Clin Oncol 33:595–598PubMedCrossRefGoogle Scholar
  6. 6.
    Chi A, Nguyen NP, Tse W et al (2013) Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation. J Hematol Oncol 6:4PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Claus F, De Gersem W, De Wagter C et al (2001) An implementation strategy for IMRT of ethmoid sinus cancer with bilateral sparing of the optic pathways. Int J Radiat Oncol Biol Phys 51:318–331PubMedCrossRefGoogle Scholar
  8. 8.
    Claus F, Mijnheer B, Rasch C et al (2002) Report of a study on IMRT planning strategies for ethmoid sinus cancer. Strahlenther Onkol 178:572–576PubMedCrossRefGoogle Scholar
  9. 9.
    Dirix P, Vanstraelen B, Jorissen M et al (2010) Intensity-modulated radiotherapy for sinonasal cancer: improved outcome compared to conventional radiotherapy. Int J Radiat Oncol Biol Phys 78:998–1004PubMedCrossRefGoogle Scholar
  10. 10.
    Doornaert P, Dahele M, Senan S et al (2013) Non-coplanar volumetric modulated arc therapy for irradiation of paranasal sinus tumors In response to Al-Mamgani et al., Highly-conformal intensity-modulated radiotherapy reduced toxicity without jeopardizing outcome in patients with paranasal sinus cancer treated by surgery and radiotherapy or (chemo)radiation. Oral Oncol 2012;48(9):905–11. Oral Oncol 49:e8PubMedCrossRefGoogle Scholar
  11. 11.
    Duprez F, Madani I, Morbee L et al. (2012) IMRT for sinonasal tumors minimizes severe late ocular toxicity and preserves disease control and survival. Int J Radiat Oncol Biol Phys 83:252–259PubMedCrossRefGoogle Scholar
  12. 12.
    Feuvret L, Noel G, Mazeron JJ et al (2006) Conformity index: a review. Int J Radiat Oncol Biol Phys 64:333–342PubMedCrossRefGoogle Scholar
  13. 13.
    Fried DV, Zanation AM, Huang B et al (2013) Patterns of local failure for sinonasal malignancies. Pract Radiat Oncol 3:e133–e120CrossRefGoogle Scholar
  14. 14.
    He J, Chen. W (2012) Chinese Cancer Registry Annual Report 2012 by National Cancer Center & Disease Prevention and Control Bureau, Ministry of Health. Military Medical Science Press, BeijinGoogle Scholar
  15. 15.
    Huang D, Xia P, Akazawa P et al (2003) Comparison of treatment plans using intensity-modulated radiotherapy and three-dimensional conformal radiotherapy for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys 56:158–168PubMedCrossRefGoogle Scholar
  16. 16.
    International Commission on Radiation Units and Measurements (2010) Planning Aims, Prescription, and Technical Data. J ICRU 10:55–59CrossRefGoogle Scholar
  17. 17.
    International Commission on Radiation Units and Measurements (2010) Special Considerations Regarding Absorbed-Dose and Dose–Volume Prescribing and Reporting in IMRT. J ICRU 10:27–40Google Scholar
  18. 18.
    Kan MW, Leung LH, Kwong DL et al (2010) Peripheral doses from noncoplanar IMRT for pediatric radiation therapy. Med Dosim 35:255–263PubMedCrossRefGoogle Scholar
  19. 19.
    Liu X-F (2008) Effects of ionizing radiation on induced malignant tumor. In: Ying W-B, Yu Z-H, Xu G-Z, Hu Y-M (eds) oncology radiotherapy. Union press of beijing medical university & peking union medical college, Beijing, p22–31CrossRefGoogle Scholar
  20. 20.
    Madani I, Bonte K, Vakaet L et al (2009) Intensity-modulated radiotherapy for sinonasal tumors: Ghent University Hospital update. Int J Radiat Oncol Biol Phys 73:424–432PubMedCrossRefGoogle Scholar
  21. 21.
    Mendenhall WM, Amdur RJ, Morris CG et al (2009) Carcinoma of the nasal cavity and paranasal sinuses. Laryngoscope 119:899–906PubMedCrossRefGoogle Scholar
  22. 22.
    Mu X, Lofroth PO, Karlsson M et al (2003) The effect of fraction time in intensity modulated radiotherapy: theoretical and experimental evaluation of an optimisation problem. Radiother Oncol 68:181–187PubMedCrossRefGoogle Scholar
  23. 23.
    Ning Z-H, Mu J-M, Jin J-X et al (2013) Single arc volumetric-modulated arc therapy is sufficient for nasopharyngeal carcinoma: a dosimetric comparison with dual arc VMAT and dynamic MLC and step-and-shoot intensity-modulated radiotherapy. Radiat Oncol 8:237PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Rong Y, Welsh JS (2011) Dosimetric and clinical review of helical tomotherapy. Expert Rev Anticancer Ther 11:309–320PubMedCrossRefGoogle Scholar
  25. 25.
    Sankaralingam M, Glegg M, Smith S et al (2012) Quantitative comparison of volumetric modulated arc therapy and intensity modulated radiotherapy plan quality in sino-nasal cancer. J Med Phys 37:8–13PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Serre A, Idri K, Fenoglietto P et al (2007) Dosimetric comparison between coplanar and non coplanar field radiotherapy for ethmoid sinus cancer. Radiat Oncol 2:35PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Sheng K, Molloy JA, Larner JM et al (2007) A dosimetric comparison of non-coplanar IMRT versus Helical Tomotherapy for nasal cavity and paranasal sinus cancer. Radiother Oncol 82:174–178PubMedCrossRefGoogle Scholar
  28. 28.
    Snyers A, Janssens GO, Twickler MB et al (2009) Malignant tumors of the nasal cavity and paranasal sinuses: long-term outcome and morbidity with emphasis on hypothalamic-pituitary deficiency. Int J Radiat Oncol Biol Phys 73:1343–1351PubMedCrossRefGoogle Scholar
  29. 29.
    Teoh M, Clark CH, Wood K et al (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol 84:967–996PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Van Gestel D, Van Vliet-Vroegindeweij C, Van Den Heuvel F et al (2013) RapidArc, SmartArc and TomoHD compared with classical step and shoot and sliding window intensity modulated radiotherapy in an oropharyngeal cancer treatment plan comparison. Radiat Oncol 8:37Google Scholar
  31. 31.
    Verbakel WF, Cuijpers JP, Hoffmans D et al (2009) Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys 74:252–259PubMedCrossRefGoogle Scholar
  32. 32.
    Wang JZ, Li XA, D’souza WD et al (2003) Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys 57:543–552PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Zhang X, Dong L et al (2005) Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys 63:594–601PubMedCrossRefGoogle Scholar
  34. 34.
    Wiegner EA, Daly ME, Murphy JD et al (2012) Intensity-modulated radiotherapy for tumors of the nasal cavity and paranasal sinuses: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 83:243–251PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng XK, Chen LH, Wang WJ et al (2010) Impact of prolonged fraction delivery times simulating IMRT on cultured nasopharyngeal carcinoma cell killing. Int J Radiat Oncol Biol Phys 78:1541–1547PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ning Zhong-Hua
    • 1
  • Jiang Jing-Ting
    • 2
  • Li Xiao-Dong
    • 2
  • Mu Jin-Ming
    • 1
  • Mo Jun-Chong
    • 1
  • Jin Jian-Xue
    • 3
  • Gao Ming
    • 1
  • Li Qi-Lin
    • 1
  • Gu Wen-Dong
    • 1
  • Chen Lu-Jun
    • 2
  • Pei Hong-Lei
    • 1
    Email author
  1. 1.Department of Radiation OncologyThe Third Affiliated Hospital, Soochow UniversityChangzhouChina
  2. 2.Department of Tumor Biological TreatmentThe Third Affiliated Hospital, Soochow UniversityChangzhouChina
  3. 3.Department of Radiation PhysicsElekta China Co. LtdBeijingChina

Personalised recommendations