Advertisement

Strahlentherapie und Onkologie

, Volume 190, Issue 12, pp 1104–1110 | Cite as

Repeat CT-scan assessment of lymph node motion in locally advanced cervical cancer patients

  • Luiza Bondar
  • Laura Velema
  • Jan Willem Mens
  • Ellen Zwijnenburg
  • Ben Heijmen
  • Mischa Hoogeman
Original article

Abstract

Purpose

In cervical cancer patients the nodal clinical target volume (CTV, defined using the major pelvic blood vessels and enlarged lymph nodes) is assumed to move synchronously with the bony anatomy. The aim of this study was to verify this assumption by investigating the motion of the major pelvic blood vessels and enlarged lymph nodes visible in CT scans.

Methods and materials

For 13 patients treated in prone position, four variable bladder-filling CT scans per patient, acquired at planning and after 40 Gy, were selected from an available dataset of 9–10 CT scans. The bladder, rectum, and the nodal-vessels structure containing the iliac vessels and all visible enlarged nodes were delineated in each selected CT scan. Two online patient setup correction protocols were simulated. The first corrected bony anatomy translations and the second corrected translations and rotations. The efficacy of each correction was calculated as the overlap between the nodal-vessels structure in the reference and repeat CT scans. The motion magnitude between delineated structures was quantified using nonrigid registration.

Results

Translational corrections resulted in an average overlap of 58 ± 13% and in a range of motion between 9.9 and 27.3 mm. Translational and rotational corrections significantly improved the overlap (64 ± 13%, p value = 0.007) and moderately reduced the range of motion to 7.6–23.8 mm (p value = 0.03). Bladder filling changes significantly correlated with the nodal-vessels motion (p < 0.001).

Conclusion

The motion of the nodal-vessels was large, nonrigid, patient-specific, and only moderately synchronous with the bony anatomy. This study highlights the need for caution when reducing the CTV-to-PTV (PTV planning target volume) margin of the nodal CTV for highly conformal radiation techniques.

Keywords

Uterine cervical neoplasm Organ motion Nodal clinical target volume Radiotherapy, intensity modulated Nonrigid registration 

Wiederholte CT-Untersuchungen von Lymphknotenbewegungen bei Patientinnen mit lokal fortgeschrittenem Zervixkarzinom

Zusammenfassung

Ziel

Bei Zervixkarzinompatientinnen wird davon ausgegangen, dass das nodale klinische Zielvolumen (CTV, definiert anhand der großen Blutgefäße des Beckens und vergrößerter Lymphknoten) sich synchron mit der knöchernen Anatomie bewegt. Ziel der vorliegenden Studie war es, diese Annahme zu verifizieren, indem die in der Computertomographie (CT) sichtbare Bewegung der großen Blutgefäße des Beckens und der vergrößerten Lymphknoten untersucht wurde.

Material und Methoden

Für 13 Patientinnen mit Therapie in Bauchlage wurden aus einer verfügbaren Datenmenge von 9–10 CT-Aufnahmen 4 CT-Aufnahmen pro Patientin mit unterschiedlicher Blasenfüllung ausgewählt, die bei der Planung und nach 40 Gy erstellt worden waren. Blase, Rektum und die Lymphgefäßstrukturen mit den Iliakalgefäßen und allen sichtbaren vergrößerten Lymphknoten wurden auf jeder ausgewählten CT-Aufnahme skizziert. Es wurden 2 Online-Korrekturdurchgänge der Patientenlagerung simuliert. Im ersten Durchgang wurden Verschiebungen der knöchernen Anatomie korrigiert und im zweiten Durchgang Verschiebungen und Rotationen. Die Wirksamkeit der einzelnen Korrekturen wurde als Überlappung der Strukturen der Lymphgefäße in den Referenz- und Wiederholungsaufnahmen berechnet. Das Ausmaß der Bewegung zwischen den skizzierten Strukturen wurde mittels nichtrigider Registrierung quantifiziert.

Ergebnisse

Die Verschiebungskorrektur führte zu einer durchschnittlichen Überlappung von 58 ± 13% und zu einer Bewegungsspanne von 9,9–27,3 mm. Verschiebungs- und Rotationskorrektur führten zu einer signifikanten Verbesserung der Überlappung (64 ± 13%, p-Wert: 0,007) und einer mäßigen Verminderung der Bewegungsspanne auf 7,6–23,8 mm (p-Wert: 0,03). Änderungen der Blasenfüllung korrelierten signifikant mit der Bewegung der Lymphgefäße (p < 0,001).

Schlussfolgerung

Die Bewegung der Lymphgefäße war groß, nichtrigide, patientenspezifisch und nur mäßig synchron mit der knöchernen Anatomie. Diese Studie betont, dass Vorsicht notwendig ist, wenn der CTV-PTV-Saum (PTV: Planungszielvolumen) des nodalen CTV für hoch konformale Bestrahlungsverfahren vermindert wird.

Schlüsselwörter

Gebärmutterhalstumor Organbewegung Nodales klinisches Zielvolumen Strahlentherapie, intensitätsmodulierte Nichtrigide Registrierung 

Notes

Compliance with ethical guidelines

Acknowledgements

This work was supported by the Dutch Cancer Society; grant number ECMR 2007–3777.

Conflict of interest.

L. Bondar, L. Velema, J.W. Mens, E. Zwijnenburg, B. Heijmen, and M. Hoogeman state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Supplementary material

66_2014_720_MOESM1_ESM.pdf (656 kb)
(PDF 656 kb)

References

  1. 1.
    Marnitz S, Köhler C, Rauer A et al (2014) Patterns of care in patients with cervical cancer 2012: results of a survey among German radiotherapy departments and out-patient health care centers. Strahlenther Onkol 190:34–40PubMedCrossRefGoogle Scholar
  2. 2.
    Tomita N, Toita T, Kodaira T et al (2012) Patterns of radiotherapy practice for patients with cervical cancer in Japan, 2003–2005: changing trends in the pattern of care process. Int J Radiat Oncol Biol Phys 83:1506–1513PubMedCrossRefGoogle Scholar
  3. 3.
    Eifel P, Moughan J, Owen J et al (1999) Patterns of radiotherapy practice for patients with squamous carcinoma of the uterine cervix: patterns of care study. Int J Radiat Oncol Biol Phys 43:351–358PubMedCrossRefGoogle Scholar
  4. 4.
    Eifel P, Moughan J, Erickson B et al (2004) Patterns of radiotherapy practice for patients with carcinoma of the uterine cervix: a patterns of care study. Int J Radiat Oncol Biol Phys 60:1144–1153PubMedCrossRefGoogle Scholar
  5. 5.
    Small W, Mell LK, Anderson P et al (2008) Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys 71:428–434CrossRefGoogle Scholar
  6. 6.
    Taylor A, Rockall AG, Reznek RH et al (2005) Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 63:1604–1612CrossRefGoogle Scholar
  7. 7.
    Dinniwell R, Chan P, Czarnota G et al (2009) Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys 74:844–851PubMedCrossRefGoogle Scholar
  8. 8.
    Brixey CJ, Roeske JC, Lujan AE et al (2002) Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 54:1388–1396PubMedCrossRefGoogle Scholar
  9. 9.
    Mundt AJ, Roeske JC, Lujan AE et al (2001) Initial clinical experience with intensity-modulated whole-pelvis radiation therapy in women with gynecologic malignancies. Gynecol Oncol 82:456–463PubMedCrossRefGoogle Scholar
  10. 10.
    Mundt AJ, Mell LK, Roeske JC (2003) Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys 56:1354–1360PubMedCrossRefGoogle Scholar
  11. 11.
    Bondar L, Hoogeman M, Mens JW et al (2012) Individualized nonadaptive and online-adaptive IMRT treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling CT-scans. Int J Radiat Oncol Biol Phys 83:1617–1623PubMedCrossRefGoogle Scholar
  12. 12.
    Hoogeman M, Bondar L, Quint S et al (2011) Early results of a prospective protocol of the use of pre-treatment established motion models in IMRT of cervical cancer. Int J Radiat Oncol Biol Phys 81:808CrossRefGoogle Scholar
  13. 13.
    Ahmad R, Hoogeman MS, Quint S et al (2012) Residual setup errors caused by rotation and non-rigid motion in prone-treated cervical cancer patients after online CBCT image-guidance. Radiother Oncol 103:322–326PubMedCrossRefGoogle Scholar
  14. 14.
    Laursen LV, Elstrøm UV, Vestergaard A et al (2012) Residual rotational set-up errors after daily cone-beam CT IGRT of locally advanced cervical cancer. Radiother Oncol 105:220–225PubMedCrossRefGoogle Scholar
  15. 15.
    Bondar L, Hoogeman M, Vásquez Osorio E et al (2010) A symmetric nonrigid registration method to handle large organ deformations in cervical cancer patients. Med Phys 37:3760–3772PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor R (1990) Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr 6:35–39CrossRefGoogle Scholar
  17. 17.
    Vásquez Osorio EH, Bondar L et al (2009) A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy. Med Phys 36:2848–2859PubMedCrossRefGoogle Scholar
  18. 18.
    Thörnqvist S, Hysing L, Zolnay A et al (2013) Treatment simulations with a statistical deformable motion model to evaluate margins for multiple targets in radiotherapy for high-risk prostate cancer. Radiother Oncol 109:344–349PubMedCrossRefGoogle Scholar
  19. 19.
    Lim K, Small W, Portelance L et al (2011) Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 79:348–355PubMedCrossRefGoogle Scholar
  20. 20.
    Ahmad R, Hoogeman MS, Quint S et al. Inter-fraction bladder filling variations and time trends for cervical cancer patients assessed with a portable 3-dimensional ultrasound bladder scanner. Radiother Oncol 89:172–179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luiza Bondar
    • 1
  • Laura Velema
    • 1
  • Jan Willem Mens
    • 1
  • Ellen Zwijnenburg
    • 2
  • Ben Heijmen
    • 1
  • Mischa Hoogeman
    • 1
  1. 1.Department of Radiation OncologyErasmus Medical Center Cancer InstituteRotterdamThe Netherlands
  2. 2.Department of Radiation OncologyRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations