Strahlentherapie und Onkologie

, Volume 190, Issue 11, pp 1060–1065 | Cite as

In vivo dosimetry in intraoperative electron radiotherapy

microMOSFETs, radiochromic films and a general-purpose linac
  • Juan López-TarjueloEmail author
  • Ana Bouché-Babiloni
  • Virginia Morillo-Macías
  • Noelia de Marco-Blancas
  • Agustín Santos-Serra
  • Juan David Quirós-Higueras
  • Carlos Ferrer-Albiach
Original article



In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field–effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac.

Materials and methods

We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers’ analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist’s assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors.


MOSFET measurements (\(\overline{D}\)  = 93.5 %, sD  =  6.5 %) were not significantly shifted from film measurements (\(\overline{D}\)  =  96.0 %, sD  =  5.5 %; p  =  0.109), and no associations were found (p = 0.526, p = 0.295,  and p = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (\(\overline{D}\)  =  95.0 %, sD  =  5.4 % were not significantly shifted from film measurements (\(\overline{D}\)  =  96.4 %, sD  =  5.0 %; p  =  0.363).


In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success.


IOERT In vivo dosimetry Radiochromic film MOSFET Surgical bed 

In-vivo-Dosimetrie für Intraoperative Elektron-Strahlentherapie

microMOSFETs, Radiochromfilme und ein Allzweck-Linac


Hintergrund und Ziel

Die In-vivo-Dosimetrie ist wünschenswert für die Überprüfung, Registrierung und die eventuelle Korrektur der Behandlungen in der IOERT („Intraoperative Electron Radiation Therapy“). Unser Ziel ist die Veröffentlichung unserer Erfahrungen beim Gebrauch von MOSFETs und Radiochromfilmen bei den Patienten, die sich einer IOERT-Behandlung mit einem Allzweck-Linac unterzogen.

Material und Methoden

Es wurden in sterile Bronchialkatheter eingeführte MOSFETs sowie zerschnittene und digitalisierte Radiochromfilme, die durch Gasplasma sterilisiert wurden, verwendet. Insgesamt wurden 59 Messungen bei 27 Patienten durchgeführt. Dazu zählten 15 Primärtumore (7 Brust- und 8 anderweitige Tumore) und 12 erneut aufgetretene Tumore. Die Daten wurden einer Analyse mit atypischen Werten unterzogen und entsprechend ihrer Kompatibilität mit den relevanten Dosen klassifiziert. Gesucht wurden Assoziationen bezüglich der Art des Detektors, Brust- und Nichtbrustbestrahlung und der Bewertung durch den Radioonkologen hinsichtlich des Schwierigkeitsgrads der Detektorplatzierung. Außerdem wurden 19 Messungen im Tumorbett mit beiden Detektoren durchgeführt.


Es ergaben sich keine bedeutenden Unterschiede bei den Messergebnissen mit MOSFET (\(\overline{D}\) =  93,5 %, sD  =  6,5 %) und den Messergebnissen mit Radiochromfilmen (\(\overline{D}\)  =  96,0 %, sD  =  5,5 %; p  =  0,109). Assoziationen wurden nicht gefunden (p = 0,526; p = 0,295; p = 0,501). Auch die im Tumorbett durchgeführten Messungen mit den beiden Detektoren ergaben, dass die Messergebnisse mit MOSFET (\(\overline{D}\)  =  95,0 %, sD  =  5,4 %) nicht wesentlich von den Messergebnissen mit Radiochromfilmen abwichen (\(\overline{D}\)  =  96,4 %, sD  =  5,0 %; p  =  0,363).


Die In-vivo-Dosimetrie mit einem Allzweck-Linac kann an jeder untersuchten Stelle zu zufriedenstellenden Ergebnissen führen. Ausschlaggebend für die Wahl des Detektors sollten Benutzerfaktoren und nicht das Verhalten des Detektors selbst sein. Die Zusammenarbeit mit dem chirurgischen Team ist entscheidend für den Erfolg.


IOERT In-vivo-Dosimetrie Radiochromfilm MOSFET Chirurgisches Bett 



Authors would like to thank Ms. Kavita Gandhi and Mrs. Sonja Behler for the linguistic assessment of this document in English and German, respectively, Mr. Juan Carlos Ruiz for the choice and the acceptance of the dosimetric equipment, Dr. Irene Torres for her documentation tasks and Prof. Dr. Felipe Calvo for his useful comments.

Compliance with ethical guidelines

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.


This work has been supported by grant IPT-300000-2010-3. Spanish Government and ERDF funds.

Conflict of interest

J. López-Tarjuelo, A. Bouché-Babiloni, V. Morillo-Macías, N. de Marco-Blancas, A. Santos-Serra, J.D. Quirós-Higueras, and C. Ferrer-Albiach state that there are no conflicts of interest.


  1. 1.
    Gunderson LL, Willett CG, Harrison LB, Petersen IA, Haddock MG (1997) Intraoperative irradiation: current and future status. Semin Oncol 24(6):715–731PubMedGoogle Scholar
  2. 2.
    Calvo FA, Sole CV, Martinez-Monge R, Azinovic I, Aristu J, Zudaire J, Garcia-Sabrido JL, Berian JM (2013) Intraoperative EBRT and resection for renal cell carcinoma: twenty-year outcomes. Strahlenther Onkol 189(2):129–136. doi: 10.1007/s00066-012-0272-3. Epub 2012 Dec 9Google Scholar
  3. 3.
    Klaver YL, Lemmens VE, Nienhuijs SW, Nieuwenhuijzen GA, Rutten HJ, de Hingh IH (2013) Intraoperative radiotherapy and cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Five consecutive case reports of locally advanced rectal cancer with synchronous peritoneal carcinomatosis. Strahlenther Onkol 189(3):256–260. doi:10.1007/s00066-012-0282-1. Epub 2013 Jan 19Google Scholar
  4. 4.
    Krengli M, Calvo FA, Sedlmayer F, Sole CV, Fastner G, Alessandro M, Maluta S, Corvò R, Sperk E, Litoborski M, Pisani C, Fillini C, Fusconi F, Osti MF, Tomio L, Marsiglia H, Ciabattoni A, Polkowski W, Di Grazia A, Gava A, Kuten A, Iotti C, Gonzalez C, Sallabanda M, Dubois JB, Catalano G, Valentini V (2013) Clinical and technical characteristics of intraoperative radiotherapy. Analysis of the ISIORT-Europe database. Strahlenther Onkol 189(9):729–737. doi:10.1007/s00066-013-0395-1. Epub 2013 Jul 12Google Scholar
  5. 5.
    Rosi A, Viti V (ed) (2003) Guidelines for quality assurance in intra-operative radiation therapy. Report ISTISAN 03/1 EN.0. Istituto Superiore di Sanità, Rome. ISSN 1123-3117Google Scholar
  6. 6.
    Consorti R, Petrucci A, Fortunato F, Soriani A, Marzi S, Iaccarino G, Landoni V, Benassi M (2005) In vivo dosimetry with MOSFETs: dosimetric characterization and first clinical results in intraoperative radiotherapy. Int J Radiat Oncol Biol Phys 63(3):952–960PubMedCrossRefGoogle Scholar
  7. 7.
    Ciocca M, Piazzi V, Lazzari R, Vavassori A, Luini A, Veronesi P, Galimberti V, Intra M, Guido A, Tosi G, Veronesi U, Orecchia R (2006) Real-time in vivo dosimetry using micro-MOSFET detectors during intraoperative electron beam radiation therapy in early-stage breast cancer. Radiother Oncol 78(2):213–216. Epub 2005 Dec 15Google Scholar
  8. 8.
    Soriani A, Landoni V, Marzi S, Iaccarino G, Saracino B, Arcangeli G, Benassi M (2007) Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer. Med Phys 34(8):3205–3210PubMedCrossRefGoogle Scholar
  9. 9.
    Agostinelli S, Gusinu M, Cavagnetto F, Garelli S, Zeverino M, Guenzi M, Corvò R, Taccini G (2012) On-line optimization of intraoperative electron beam radiotherapy of the breast. Radiother Oncol 103(2):188–92. doi:10.1016/j.radonc.2012.01.009. Epub 2012 Feb 17Google Scholar
  10. 10.
    Ciocca M, Orecchia R, Garibaldi C, Rondi E, Luini A, Gatti G, Intra M, Veronesi P, Lazzari R, Tosi G, Veronesi U (2003) In vivo dosimetry using radiochromic films during intraoperative electron beam radiation therapy in early-stage breast cancer. Radiother Oncol 69(3):285–289PubMedCrossRefGoogle Scholar
  11. 11.
    Krengli M, Terrone C, Ballarè A, Loi G, Tarabuzzi R, Marchioro G, Beldì D, Mones E, Bolchini C, Volpe A, Frea B (2010) Intraoperative radiotherapy during radical prostatectomy for locally advanced prostate cancer: technical and dosimetric aspects. Int J Radiat Oncol Biol Phys 76(4):1073–1077. doi:10.1016/j.ijrobp.2009.03.037. Epub 2009 Jul 20Google Scholar
  12. 12.
    Ramani R, Russell S, O’Brien P (1997) Clinical dosimetry using MOSFETs. Int J Radiat Oncol Biol Phys 37(4):959–964PubMedCrossRefGoogle Scholar
  13. 13.
    Scalchi P, Francescon P (1998) Calibration of a mosfet detection system for 6-MV in vivo dosimetry. Int J Radiat Oncol Biol Phys 40(4):987–993PubMedCrossRefGoogle Scholar
  14. 14.
    Cygler JE, Scalchi P (2009) MOSFET dosimetry in Radiotherapy. In: Rogers DWO, Cygler JE (ed) Clinical dosimetry measurements in radiotherapy. Medical Physics, Madison, p 960. ISBN 978-1-888340-84-6Google Scholar
  15. 15.
    Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists. Medicine Med Phys 25(11):2093–2115CrossRefGoogle Scholar
  16. 16.
    Butson MJ, Yu PKN, Cheung T, Metcalfe P (2003) Radiochromic film for medical radiation dosimetry. Mater Sci Eng: R 41(3–5):61–120Google Scholar
  17. 17.
    Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth VG, Vynckier S, IAEA TRS-398 (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA, Vienna. ISSN 1011-4289Google Scholar
  18. 18.
    BIPM. Evaluation of measurement data—guide to the expression of uncertainty in measurement. JCGM 100:2008Google Scholar
  19. 19.
    Wang LL, Rogers DW (2007) Monte Carlo study of Si diode response in electron beams. Med Phys 34(5):1734–1742PubMedCrossRefGoogle Scholar
  20. 20.
    Mendenhall W, Sincich T (2005) Statistics for engineering and the sciences, 5th ed. Pearson Prentice Hall, New Jersey. ISBN 0-13-187706-2.Google Scholar
  21. 21.
    Conde Moreno A, Ruiz RJC, Bouché Babiloni A, Suárez DR, Hueso Bernad N, López Tarjuelo J, Ferrer Albiach C, Calvo FA (2009) Sterilization effect on MD-55—2 radiochromic film for in vivo dosimetry in electron intraoperative radiotherapy. Int J Radiat Oncol Biol Phys 75(3 Supplement):S621. doi:10.1016/j.ijrobp. 2009.07.1419Google Scholar
  22. 22.
    Pascau J, Santos Miranda JA, Calvo FA, Bouché A, Morillo V, González-San Segundo C, Ferrer C, López Tarjuelo J, Desco M (2012) An innovative tool for intraoperative electron beam radiotherapy simulation and planning: description and initial evaluation by radiation oncologists. Int J Radiat Oncol Biol Phys 83(2):e287–e295. doi:10.1016/j.ijrobp.2011.12.063. Epub 2012 Mar 6Google Scholar
  23. 23.
    Calvo FA, Sole CV, González ME, Tangco ED, López-Tarjuelo J, Koubychine I, Santos JA, Pascau J, Herranz R, Ferrer C (2013) Research opportunities in intraoperative radiation therapy: the next decade 2013–2023. Clin Transl Oncol 15:683–690Google Scholar
  24. 24.
    Bloemen-van Gurp EJ, Minken AW, Mijnheer BJ, Dehing-Oberye CJ, Lambin P (2006) Clinical implementation of MOSFET detectors for dosimetry in electron beams. Radiother Oncol 80(3):288–295. Epub 2006 Aug 17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan López-Tarjuelo
    • 1
    Email author
  • Ana Bouché-Babiloni
    • 2
  • Virginia Morillo-Macías
    • 2
  • Noelia de Marco-Blancas
    • 1
  • Agustín Santos-Serra
    • 1
  • Juan David Quirós-Higueras
    • 1
  • Carlos Ferrer-Albiach
    • 2
  1. 1.Servicio de Radiofísica y Protección RadiológicaConsorcio Hospitalario Provincial de CastellónCastellón de la PlanaSpain
  2. 2.Servicio de Oncología RadioterápicaConsorcio Hospitalario Provincial de CastellónCastellón de la PlanaSpain

Personalised recommendations