Advertisement

Strahlentherapie und Onkologie

, Volume 190, Issue 6, pp 521–532 | Cite as

Stereotactic radiosurgery for treatment of brain metastases

A report of the DEGRO Working Group on Stereotactic Radiotherapy
  • Martin KocherEmail author
  • Andrea Wittig
  • Marc Dieter Piroth
  • Harald Treuer
  • Heinrich Seegenschmiedt
  • Maximilian Ruge
  • Anca-Ligia Grosu
  • Matthias Guckenberger
Original article

Abstract

Background

This report from the Working Group on Stereotaktische Radiotherapie of the German Society of Radiation Oncology (Deutsche Gesellschaft für Radioonkologie, DEGRO) provides recommendations for the use of stereotactic radiosurgery (SRS) on patients with brain metastases. It considers existing international guidelines and details them where appropriate.

Results and discussion

The main recommendations are: Patients with solid tumors except germ cell tumors and small-cell lung cancer with a life expectancy of more than 3 months suffering from a single brain metastasis of less than 3 cm in diameter should be considered for SRS. Especially when metastases are not amenable to surgery, are located in the brain stem, and have no mass effect, SRS should be offered to the patient. For multiple (two to four) metastases—all less than 2.5 cm in diameter—in patients with a life expectancy of more than 3 months, SRS should be used rather than whole-brain radiotherapy (WBRT). Adjuvant WBRT after SRS for both single and multiple (two to four) metastases increases local control and reduces the frequency of distant brain metastases, but does not prolong survival when compared with SRS and salvage treatment. As WBRT carries the risk of inducing neurocognitive damage, it seems reasonable to withhold WBRT for as long as possible.

Conclusion

A single (marginal) dose of 20 Gy is a reasonable choice that balances the effect on the treated lesion (local control, partial remission) against the risk of late side effects (radionecrosis). Higher doses (22–25 Gy) may be used for smaller (< 1 cm) lesions, while a dose reduction to 18 Gy may be necessary for lesions greater than 2.5–3 cm. As the infiltration zone of the brain metastases is usually small, the GTV–CTV (gross tumor volume–clinical target volume) margin should be in the range of 0–1 mm. The CTV–PTV (planning target volume) margin depends on the treatment technique and should lie in the range of 0–2 mm. Distant brain recurrences fulfilling the aforementioned criteria can be treated with SRS irrespective of previous WBRT.

Keywords

Brain tumor Metastases Stereotactic radiosurgery Whole-brain radiotherapy DEGRO 

Stereotaktische Radiochirurgie zur Behandlung von Hirnmetastasen

Ein Bericht der Deutschen Gesellschaft für Radioonkologie (DEGRO)

Zusammenfassung

Einleitung

Dieser Bericht der Arbeitsgruppe „Stereotaktische Radiotherapie“ der Deutschen Gesellschaft für Radioonkologie (DEGRO) gibt Empfehlungen für die Behandlung von Patienten mit Hirnmetastasen mittels stereotaktischer Radiochirurgie (SRS). Internationale Leitlinien werden berücksichtigt und, wenn nötig, ergänzt.

Ergebnisse und Diskussion

Die wichtigsten Empfehlungen lauten: Patienten mit soliden Tumoren außer Keimzelltumoren und kleinzelligem Bronchialkarzinom und einer Lebenserwartung von mindestens 3 Monaten sollten bei Vorliegen von singulären Hirnmetastasen < 3 cm für die SRS in Betracht gezogen werden. Insbesondere bei inoperablen Metastasen, Hirnstammmetastasen und bei Metastasen ohne Masseneffekt sollte die SRS angeboten werden. Patienten mit multiplen Metastasen (2–4), alle mit einem Durchmesser < 2,5 cm, sollten bei einer Lebenserwartung von > 3 Monaten ebenfalls primär eine SRS (statt einer Ganzhirnbestrahlung, „whole brain radiotherapy“, WBRT) erhalten. Eine adjuvante WBRT nach SRS von 1–4 Hirnmetastasen erhöht die lokale Kontrolle und reduziert die Häufigkeit distanter Hirnmetastasen, verlängert aber das Überleben im Vergleich zu einer primären alleinigen SRS und Rezidivtherapieverfahren nicht. Da die WBRT das Risiko von neurokognitiven Spätfolgen mit sich trägt, erscheint es sinnvoll, sie solange wie möglich zurückzustellen.

Schlussfolgerung

Eine Einzeldosis von 20 Gy stellt einen sinnvollen Kompromiss zwischen dem zu erreichenden therapeutischen Effekt (lokale Kontrolle, partielle Remission) und den möglichen Spätnebenwirkungen (Strahlennekrose) dar. Höhere Dosen (22–25 Gy) können für kleinere Läsionen (< 1 cm) verwendet werden, bei größeren Metastasen (> 2,5–3 cm) ist evtl. eine Dosisreduktion auf 18 Gy erforderlich. Da die Infiltrationszone von Hirnmetastasen klein ist, sollte der Abstand zwischen GTV („Gross Tumor Volume“) und CTV („Clinical Target Volume“) 0–1 mm betragen. Der Abstand zwischen CTV und PTV („Planning Target Volume“) sollte abhängig von der Bestrahlungstechnik 0–2 mm betragen. Distante Hirnmetastasen, welche die genannten Kriterien erfüllen, können auch nach vorangegangener WBRT mittels SRS behandelt werden.

Schlüsselwörter

Hirntumor Metastasen Stereotaktische Radiochirurgie Ganzhirnbestrahlung DEGRO 

Notes

Compliance with ethical guidelines

Conflict of interest

M. Kocher, A. Wittig, M. D. Piroth, H. Treuer, H. Seegenschmiedt, M. Ruge, A-L. Grosu, and M. Guckenberger state that there are no conflicts of interest.

References

  1. 1.
    Sturm V, Kober B, Höver KH et al (1987) Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiat Oncol Biol Phys 13:279–282Google Scholar
  2. 2.
    Linskey ME, Andrews DW, Asher AL et al (2010) The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:45–68PubMedCentralPubMedGoogle Scholar
  3. 3.
    Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14PubMedGoogle Scholar
  4. 4.
    Tsao MN, Rades D, Wirth A et al (2012) Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol 2:210–225PubMedCentralPubMedGoogle Scholar
  5. 5.
    McDuff SG, Taich ZJ, Lawson JD et al (2013) Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases. J Neurol Neurosurg Psychiatry 84:1384–1391Google Scholar
  6. 6.
    Sperduto PW, Chao ST, Sneed PK et al (2010) Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys 77:655–661PubMedGoogle Scholar
  7. 7.
    Zindler JD, Rodrigues G, Haasbeek CJ et al (2013) The clinical utility of prognostic scoring systems in patients with brain metastases treated with radiosurgery. Radiother Oncol 106:370–374PubMedGoogle Scholar
  8. 8.
    Park YH, Kim TH, Jung SY et al (2013) Combined primary tumor and extracranial metastasis status as constituent factor of prognostic indices for predicting the overall survival in patients with brain metastases. J Korean Med Sci 28:205–212PubMedCentralPubMedGoogle Scholar
  9. 9.
    Sperduto PW, Kased N, Roberge D et al (2012) Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 30:419–425PubMedCentralPubMedGoogle Scholar
  10. 10.
    Halasz LM, Rockhill JK (2013) Stereotactic radiosurgery and Stereotactic Radiotherapy for brain metastases. Surg Neurol Int 4:S185–191Google Scholar
  11. 11.
    Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363:1665–1672PubMedGoogle Scholar
  12. 12.
    Kondziolka D, Patel A, Lunsford LD, Kassam A, Flickinger JC (1999) Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45:427–434PubMedGoogle Scholar
  13. 13.
    Chougule P, Burton-Williams M, Saris S, Zheng Z, Ponte B, Noren G (2000) Randomized treatment of brain metastasis with gamma knife radiosurgery, whole brain radiotherapy or both. Int J Radiat Oncol Biol Phys 48:114Google Scholar
  14. 14.
    Patil CG, Pricola K, Sarmiento JM, Garg SK, Bryant A, Black KL (2012) Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Database Syst Rev 9:CD006121PubMedGoogle Scholar
  15. 15.
    Wang LG, Guo Y, Zhang X et al (2002) Brain metastasis: experience of the Xi-Jing hospital. Stereotact Funct Neurosurg 78:70–83PubMedGoogle Scholar
  16. 16.
    Sanghavi SN, Miranpuri SS, Chappell R et al (2001) Radiosurgery for patients with brain metastases: a multi-institutional analysis, stratified by the RTOG recursive partitioning analysis method. Int J Radiat Oncol Biol Phys 51:426–434PubMedGoogle Scholar
  17. 17.
    Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483–2491PubMedGoogle Scholar
  18. 18.
    Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141PubMedCentralPubMedGoogle Scholar
  19. 19.
    Li B, Yu J, Suntharalingam M et al (2000) Comparison of three treatment options for single brain metastasis from lung cancer. Int J Cancer 90:37–45PubMedGoogle Scholar
  20. 20.
    Fokas E, Henzel M, Hamm K, Surber G, Kleinert G, Engenhart-Cabillic R (2010) Radiotherapy for brain metastases from renal cell cancer: should whole-brain radiotherapy be added to stereotactic radiosurgery?: analysis of 88 patients. Strahlenther Onkol 186:210–217PubMedGoogle Scholar
  21. 21.
    Sneed PK, Suh JH, Goetsch SJ et al (2002) A multi-institutional review of radiosurgery alone vs. radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int J Radiat Oncol Biol Phys 53:519–526PubMedGoogle Scholar
  22. 22.
    Pirzkall A, Debus J, Lohr F et al (1998) Radiosurgery alone or in combination with whole-brain radiotherapy for brain metastases. J Clin Oncol 16:3563–3569PubMedGoogle Scholar
  23. 23.
    Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar A, Kondziolka D, Lunsford LD (2005) The impact of whole-brain radiation therapy on the long-term control and morbidity of patients surviving more than one year after gamma knife radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 62:1125–1132PubMedGoogle Scholar
  24. 24.
    Rades D, Kueter JD, Hornung D et al (2008) Comparison of stereotactic radiosurgery (SRS) alone and whole brain radiotherapy (WBRT) plus a stereotactic boost (WBRT + SRS) for one to three brain metastases. Strahlenther Onkol 184:655–662PubMedGoogle Scholar
  25. 25.
    Noel G, Medioni J, Valery CA et al (2003) Three irradiation treatment options including radiosurgery for brain metastases from primary lung cancer. Lung Cancer 41:333–343PubMedGoogle Scholar
  26. 26.
    Park HS, Chiang VL, Knisely JP, Raldow AC, Yu JB (2011) Stereotactic radiosurgery with or without whole-brain radiotherapy for brain metastases: an update. Expert Rev Anticancer Ther 11:1731–1738PubMedGoogle Scholar
  27. 27.
    Combs SE, Schulz-Ertner D, Thilmann C, Edler L, Debus J (2004) Treatment of cerebral metastases from breast cancer with stereotactic radiosurgery. Strahlenther Onkol 180:590–596PubMedGoogle Scholar
  28. 28.
    Hoffman R, Sneed PK, McDermott MW et al (2001) Radiosurgery for brain metastases from primary lung carcinoma. Cancer J 7:121–131PubMedGoogle Scholar
  29. 29.
    Aoyama H, Tago M, Kato N et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68:1388–1395PubMedGoogle Scholar
  30. 30.
    Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044PubMedGoogle Scholar
  31. 31.
    Meyers CA, Rock EP, Fine HA (2012) Refining endpoints in brain tumor clinical trials. J Neurooncol 108:227–230PubMedGoogle Scholar
  32. 32.
    Soffietti R, Kocher M, Abacioglu UM et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol 31:65–72PubMedGoogle Scholar
  33. 33.
    Suh JH (2010) Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 362:1119–1127PubMedGoogle Scholar
  34. 34.
    Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681PubMedGoogle Scholar
  35. 35.
    Kalkanis SN, Kondziolka D, Gaspar LE et al (2010) The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:33–43PubMedCentralPubMedGoogle Scholar
  36. 36.
    Fuentes R, Bonfill X, Exposito J (2006) Surgery versus radiosurgery for patients with a solitary brain metastasis from non-small cell lung cancer. Cochrane Database Syst Rev 25:CD004840Google Scholar
  37. 37.
    Minniti G, Esposito V, Clarke E et al (2013) Multidose stereotactic radiosurgery (9 gy × 3) of the postoperative resection cavity for treatment of large brain metastases. Int J Radiat Oncol Biol Phys 86:623–629PubMedGoogle Scholar
  38. 38.
    Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47:291–298PubMedGoogle Scholar
  39. 39.
    Muacevic A, Wowra B, Siefert A, Tonn JC, Steiger HJ, Kreth FW (2008) Microsurgery plus whole brain irradiation versus Gamma Knife surgery alone for treatment of single metastases to the brain: a randomized controlled multicentre phase III trial. J Neurooncol 87:299–307PubMedGoogle Scholar
  40. 40.
    Patchell RA, Tibbs PA, Walsh JW et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322:494–500PubMedGoogle Scholar
  41. 41.
    Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489PubMedGoogle Scholar
  42. 42.
    Lippitz B, Lindquist C, Paddick I, Peterson D, O’Neill K, Beaney R (2014) Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat Rev 40:48–59Google Scholar
  43. 43.
    Vecht CJ, Haaxma-Reiche H, Noordijk EM et al (1993) Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 33:583–590PubMedGoogle Scholar
  44. 44.
    Adler JR, Cox RS, Kaplan I, Martin DP (1992) Stereotactic radiosurgical treatment of brain metastases. J Neurosurg 76:444–449PubMedGoogle Scholar
  45. 45.
    Alexander E, 3rd, Moriarty TM, Davis RB et al (1995) Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst 87:34–40PubMedGoogle Scholar
  46. 46.
    Flickinger JC, Kondziolka D, Lunsford LD et al (1994) A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Radiat Oncol Biol Phys 28:797–802PubMedGoogle Scholar
  47. 47.
    Levitt MR, Levitt R, Silbergeld DL (2013) Controversies in the management of brain metastases. Surg Neurol Int 4:S231–S235Google Scholar
  48. 48.
    Rades D, Kieckebusch S, Haatanen T, Lohynska R, Dunst J, Schild SE (2008) Surgical resection followed by whole brain radiotherapy versus whole brain radiotherapy alone for single brain metastasis. Int J Radiat Oncol Biol Phys 70:1319–1324PubMedGoogle Scholar
  49. 49.
    Gans JH, Raper DM, Shah AH et al (2013) The role of radiosurgery to the tumor bed after resection of brain metastases. Neurosurgery 72:317–326PubMedGoogle Scholar
  50. 50.
    Connolly EP, Mathew M, Tam M et al (2013) Involved field radiation therapy after surgical resection of solitary brain metastases–mature results. Neuro Oncol 15:589–594PubMedCentralPubMedGoogle Scholar
  51. 51.
    Wang CC, Floyd SR, Chang CH et al (2012) Cyberknife hypofractionated stereotactic radiosurgery (HSRS) of resection cavity after excision of large cerebral metastasis: efficacy and safety of an 800 cGy × 3 daily fractions regimen. J Neurooncol 106:601–610PubMedGoogle Scholar
  52. 52.
    Prabhu R, Shu HK, Hadjipanayis C et al (2012) Current dosing paradigm for stereotactic radiosurgery alone after surgical resection of brain metastases needs to be optimized for improved local control. Int J Radiat Oncol Biol Phys 83:e61–e66Google Scholar
  53. 53.
    Kelly PJ, Lin YB, Yu AY et al (2012) Stereotactic irradiation of the postoperative resection cavity for brain metastasis: a frameless linear accelerator-based case series and review of the technique. Int J Radiat Oncol Biol Phys 82:95–101PubMedGoogle Scholar
  54. 54.
    Choi CY, Chang SD, Gibbs IC et al (2012) What is the optimal treatment of large brain metastases? An argument for a multidisciplinary approach. Int J Radiat Oncol Biol Phys 84:688–693PubMedGoogle Scholar
  55. 55.
    Ammirati M, Cobbs CS, Linskey ME et al (2010) The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:85–96PubMedCentralPubMedGoogle Scholar
  56. 56.
    Patel SH, Robbins JR, Gore EM et al (2012) ACR Appropriateness Criteria(R) follow-up and retreatment of brain metastases. Am J Clin Oncol 35:302–306PubMedGoogle Scholar
  57. 57.
    Chao ST, Barnett GH, Vogelbaum MA et al (2008) Salvage stereotactic radiosurgery effectively treats recurrences from whole-brain radiation therapy. Cancer 113:2198–2204PubMedGoogle Scholar
  58. 58.
    Yomo S, Hayashi M (2013) The efficacy and limitations of stereotactic radiosurgery as a salvage treatment after failed whole brain radiotherapy for brain metastases. J Neurooncol 113:459–465PubMedGoogle Scholar
  59. 59.
    Kwon KY, Kong DS, Lee JI, Nam DH, Park K, Kim JH (2007) Endpoint of repeated radiosurgery for recurrent metastatic brain tumors. Clin Neurol Neurosurg 109:132–137PubMedGoogle Scholar
  60. 60.
    Johnson M, Baschnagel AM, Chen PY et al (2013) Analysis of risk factors for development of radiation necrosis following gamma knife radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 87:S279Google Scholar
  61. 61.
    Schell MC, Bova FJ, Larson DA et al (1995) Stereotactic radiosurgery: report of Task Group 42 Radiation Therapy Committee. AAPM Report No 54 (The American Institute of Physics). http://www.aapm.org/pubs/reports/RPT_54.pdf
  62. 62.
    Seung SK, Larson DA, Galvin JM et al (2013) American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). Am J Clin Oncol 36:310–315PubMedGoogle Scholar
  63. 63.
    Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multileaf collimator? Med Phys 27:2494–2502Google Scholar
  64. 64.
    Treuer H, Kocher M, Hoevels M et al (2006) Impact of target point deviations on control and complication probabilities in stereotactic radiosurgery of AVMs and metastases. Radiother Oncol 81:25–32PubMedGoogle Scholar
  65. 65.
    Hartmann GH, Lutz W, Arndt J et al (1995) Quality Assurance Program on Stereotactic Radiosurgery. Report From a Quality Assurance Task Group. BerlinGoogle Scholar
  66. 66.
    DIN_6875-1:2004-01 (2004) Spezielle Bestrahlungseinrichtungen—Teil 1: Perkutane stereotaktische Bestrahlung, Kennmerkmale und besondere PrüfmethodenGoogle Scholar
  67. 67.
    DIN_6875-2:2008-11 (2008) Spezielle Bestrahlungseinrichtungen – Teil 2: Perkutane stereotaktische Bestrahlung—KonstanzprüfungenGoogle Scholar
  68. 68.
    Dieterich S, Cavedon C, Chuang CF et al (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 38:2914–2936 (Erratum: Med Phys 011 Sep;38: 5264)Google Scholar
  69. 69.
    Klein EE, Hanley J, Bayouth J et al (2009) Task Group 142 report: quality assurance of medical accelerators. Med Phys 36:4197–4212PubMedGoogle Scholar
  70. 70.
    DIN_6875-3:2008:03 (2008) Spezielle Bestrahlungseinrichtungen—Teil 3: Fluenzmodulierte Strahlentherapie—Kennmerkmale, Prüfmethoden und Regeln für den klinischen EinsatzGoogle Scholar
  71. 71.
    DIN_6875-4:2011:10 (2011) Spezielle Bestrahlungseinrichtungen—Teil 4: Fluenzmodulierte Strahlentherapie—KonstanzprüfungenGoogle Scholar
  72. 72.
    Ezzell GA, Galvin JM, Low D et al (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 30:2089–2115PubMedGoogle Scholar
  73. 73.
    Nüsslin F, Bohsung J, Frenzel T, Grosser K-H, Paulsen F, Sack H (2004) Leitlinie zur Strahlentherapie mit fluenzmodulierten Feldern (IMRT). Ausgearbeitet von einem DGMP – DEGRO Arbeitsausschuss. In DGMP-Bericht Nr. Tübingen. http://www.dgmp.de/oeffentlichkeitsarbeit/papiere/Bericht19.pdf
  74. 74.
    Aspradakis MM, Byrne JP, Palmans H et al (2010) Small field MV photon dosimetry. IPEM Reports Series (Institute of Physics and Engineering in Medicine)Google Scholar
  75. 75.
    DIN 6809-8 ip (2013) Klinische Dosimetrie—Teil 8: Dosimetrie kleiner Photonen-BestrahlungsfelderGoogle Scholar
  76. 76.
    Bichay T, Dieterich S, Orton CG. (2013) Submillimeter accuracy in radiosurgery is not possible. Med Phys 40:050601. doi:10.1118/1.4790690Google Scholar
  77. 77.
    Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381PubMedGoogle Scholar
  78. 78.
    Antypas C, Pantelis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 53:4697–4718PubMedGoogle Scholar
  79. 79.
    Wiehle R, Koth HJ, Nanko N, Grosu AL, Hodapp N (2009) On the accuracy of isocenter verification with kV imaging in stereotactic radiosurgery. Strahlenther Onkol 185:325–330PubMedGoogle Scholar
  80. 80.
    Chang J, Yenice KM, Narayana A, Gutin PH (2007) Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup. Med Phys 34:2077–2084PubMedGoogle Scholar
  81. 81.
    Masi L, Casamassima F, Polli C, Menichelli C, Bonucci I, Cavedon C (2008) Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up. Int J Radiat Oncol Biol Phys 71:926–933PubMedGoogle Scholar
  82. 82.
    Fuss M, Salter BJ, Cheek D, Sadeghi A, Hevezi JM, Herman T (2004) Repositioning accuracy of a commercially available thermoplastic mask system. Radiother Oncol 71:339–345PubMedGoogle Scholar
  83. 83.
    Baumert BG, Egli P, Studer S, Dehing C, Davis JB (2005) Repositioning accuracy of fractionated stereotactic irradiation: assessment of isocentre alignment for different dental fixations by using sequential CT scanning. Radiother Oncol 74:61–66PubMedGoogle Scholar
  84. 84.
    Guckenberger M, Roesch J, Baier K, Sweeney RA, Flentje M (2012) Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol 7:63PubMedCentralPubMedGoogle Scholar
  85. 85.
    Gevaert T, Verellen D, Engels B et al (2012) Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery. Int J Radiat Oncol Biol Phys 83:467–474PubMedGoogle Scholar
  86. 86.
    Minniti G, Scaringi C, Clarke E, Valeriani M, Osti M, Enrici RM (2011) Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical endpoints. Radiat Oncol 6:158PubMedCentralPubMedGoogle Scholar
  87. 87.
    Ramakrishna N, Rosca F, Friesen S, Tezcanli E, Zygmanszki P, Hacker F (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95:109–115PubMedGoogle Scholar
  88. 88.
    Minniti G, Valeriani M, Clarke E et al (2010) Fractionated Stereotactic Radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system. Radiat Oncol 5:1PubMedCentralPubMedGoogle Scholar
  89. 89.
    Theelen A, Martens J, Bosmans G et al (2012) Relocatable fixation systems in intracranial Stereotactic Radiotherapy. Accuracy of serial CT scans and patient acceptance in a randomized design. Strahlenther Onkol 188:84–90PubMedGoogle Scholar
  90. 90.
    Sperduto PW (2010) What is your patient’s GPA and why does it matter? Managing brain metastases and the cost of hope. Int J Radiat Oncol Biol Phys 77:643–644PubMedGoogle Scholar
  91. 91.
    Fokas E, Henzel M, Surber G, Kleinert G, Hamm K, Engenhart-Cabillic R (2012) Stereotactic radiosurgery and fractionated Stereotactic Radiotherapy: comparison of efficacy and toxicity in 260 patients with brain metastases. J Neurooncol 109:91–98PubMedGoogle Scholar
  92. 92.
    Wegner RE, Leeman JE, Kabolizadeh P et al (2013) Fractionated Stereotactic Radiosurgery for Large Brain Metastases. Am J Clin Oncol [Epub ahead of print]Google Scholar
  93. 93.
    Yamamoto M (2013) 147 Gamma knife treatment results for multiple brain metastases: a multi-institutional prospective study in Japan (Abbreviation; JLGK0901, UMIN ID; 00001812). Neurosurgery 60:168–169Google Scholar
  94. 94.
    Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD (2006) Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys 64:898–903PubMedGoogle Scholar
  95. 95.
    Kuo T, Recht L (2006) Optimizing therapy for patients with brain metastases. Semin Oncol 33:299–306PubMedGoogle Scholar
  96. 96.
    Suh JH, Videtic GM, Aref AM et al (2010) ACR Appropriateness Criteria: single brain metastasis. Curr Probl Cancer 34:162–174PubMedGoogle Scholar
  97. 97.
    Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791PubMedGoogle Scholar
  98. 98.
    Anzalone N, Essig M, Lee SK et al (2013) Optimizing contrast-enhanced magnetic resonance imaging characterization of brain metastases: relevance to stereotactic radiosurgery. Neurosurgery 72:691–701PubMedGoogle Scholar
  99. 99.
    Pantelis E, Papadakis N, Verigos K et al (2010) Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys 78:257–267PubMedGoogle Scholar
  100. 100.
    Baumert BG, Rutten I, Dehing-Oberije C et al (2006) A pathology-based substrate for target definition in radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 66:187–194PubMedGoogle Scholar
  101. 101.
    Noël G, Simon JM, Valery CA et al (2003) Radiosurgery for brain metastasis: impact of CTV on local control. Radiother Oncol 68:15–21PubMedGoogle Scholar
  102. 102.
    Nataf F, Schlienger M, Liu Z et al (2008) Radiosurgery with or without a 2-mm margin for 93 single brain metastases. Int J Radiat Oncol Biol Phys 70:766–772Google Scholar
  103. 103.
    Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19:143–148PubMedGoogle Scholar
  104. 104.
    Telera S, Fabi A, Pace A et al (2013) Radionecrosis induced by stereotactic radiosurgery of brain metastases: results of surgery and endpoint of disease. J Neurooncol 113:313–325PubMedGoogle Scholar
  105. 105.
    Maldaun MV, Aguiar PH, Lang F, Suki D, Wildrick D, Sawaya R (2008) Radiosurgery in the treatment of brain metastases: critical review regarding complications. Neurosurg Rev 31:1–8; discussion 9Google Scholar
  106. 106.
    Dequesada IM, Quisling RG, Yachnis A, Friedman WA (2008) Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 63:898–903; discussion 4Google Scholar
  107. 107.
    Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC (2010) Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77:996–1001PubMedGoogle Scholar
  108. 108.
    Shehata MK, Young B, Reid B et al (2004) Stereotatic radiosurgery of 468 brain metastases < or = 2 cm: implications for SRS dose and whole brain radiation therapy. Int J Radiat Oncol Biol Phys 59:87–93PubMedGoogle Scholar
  109. 109.
    Voges J, Treuer H, Sturm V et al (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36:1055–1063PubMedGoogle Scholar
  110. 110.
    Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–S27Google Scholar
  111. 111.
    Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19PubMedGoogle Scholar
  112. 112.
    Paddick I (2000) Simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 93:219–222PubMedGoogle Scholar
  113. 113.
    Lamm AF, Elaimy AL, Lamoreaux WT et al (2013) A review of the clinical outcomes for patients diagnosed with brainstem metastasis and treated with stereotactic radiosurgery. ISRN Surg 2013:652895PubMedCentralPubMedGoogle Scholar
  114. 114.
    Vogelbaum MA, Angelov L, Lee SY, Li L, Barnett GH, Suh JH (2006) Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurg 104:907–912PubMedGoogle Scholar
  115. 115.
    Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76:S36–S41Google Scholar
  116. 116.
    Sharma MS, Kondziolka D, Khan A et al (2008) Radiation tolerance limits of the brainstem. Neurosurgery 63:728–32; discussion 32–3Google Scholar
  117. 117.
    Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL (2011) A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol 32:1885–1892PubMedGoogle Scholar
  118. 118.
    Brandsma D, Stalpers L, Taal W, Sminia P, Van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461PubMedGoogle Scholar
  119. 119.
    Brandsma D, Van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638PubMedGoogle Scholar
  120. 120.
    Chamberlain MC (2008) Pseudoprogression in glioblastoma. J Clin Oncol 26:4359–4360PubMedGoogle Scholar
  121. 121.
    Tran DK, Jensen RL (2013) So-called “pseudoprogression” vs. tumor progression: review and future research opportunities. Surg Neurol Int 4:S129–S135PubMedCentralPubMedGoogle Scholar
  122. 122.
    Grosu AL, Astner ST, Riedel E et al (2011) An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81:1049–1058PubMedGoogle Scholar
  123. 123.
    Galldiks N, Stoffels G, Filss CP et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53:1367–1374PubMedGoogle Scholar
  124. 124.
    Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372PubMedGoogle Scholar
  125. 125.
    Sundgren PC (2009) MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 30:1469–1476PubMedGoogle Scholar
  126. 126.
    Kickingereder P, Dorn F, Blau T et al (2013) Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat Oncol 8:52PubMedCentralPubMedGoogle Scholar
  127. 127.
    Bhangoo SS, Linskey ME, Kalkanis SN (2011) Evidence-based guidelines for the management of brain metastases. Neurosurg Clin N Am 22:97–104PubMedGoogle Scholar
  128. 128.
    Network NCC (2012) Central nervous system cancers NCCN guidelines for treatment of cancer by siteGoogle Scholar
  129. 129.
    Weller M, Schlegel U, Wick W et al (2011) Hirnmetastasen und Meningeosis neoplastica. Leitlinien der Deutschen Gesellschaft für Neurologie. AWMF online 2011;AWMF-Register 030/060:Stand 9/2011.Google Scholar
  130. 130.
    D’Ambrosio AL, DeYoung C, Isaacson SR (2011) Radiosurgical management of brain metastases. Neurosurg Clin N Am 22:45–51PubMedGoogle Scholar
  131. 131.
    Kondziolka D, Flickinger JC, Lunsford LD (2012) Radiosurgery for brain metastases. In: Kim DG, Lunsford LD (eds) Current and future management of brain metastasis. Karger AG, BaselGoogle Scholar
  132. 132.
    Niranjan A, Lunsford LD, Emerick RL (2012) Stereotactic radiosurgery for patients with metastatic brain tumors: development of a consensus radiosurgery guideline recommendation. In: Kim DG, Lunsford LD (eds) Current and future management of brain metastasis. Karger AG, Basel, pp 123–138Google Scholar
  133. 133.
    Scoccianti S, Detti B, Cipressi S, Iannalfi A, Franzese C, Biti G (2012) Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neurooncol 108:291–308PubMedGoogle Scholar
  134. 134.
    Thavarajah N, Wong K, Zhang L et al (2013) Continued success in providing timely palliative radiation therapy at the Rapid Response Radiotherapy Program: a review of 2008–2012. Curr Oncol 20:e206–e211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Kocher
    • 1
    Email author
  • Andrea Wittig
    • 2
  • Marc Dieter Piroth
    • 3
    • 9
  • Harald Treuer
    • 4
  • Heinrich Seegenschmiedt
    • 5
  • Maximilian Ruge
    • 4
  • Anca-Ligia Grosu
    • 6
  • Matthias Guckenberger
    • 7
    • 8
  1. 1.Department of Radiation OncologyUniversity Hospital CologneKölnGermany
  2. 2.Department of Radiotherapy and Radiation OncologyPhilips-University MarburgMarburgGermany
  3. 3.Department of Radiotherapy and Radiation OncologyUniversity Hospital RWTH AachenAachenGermany
  4. 4.Department of Stereotaxy and Functional NeurosurgeryUniversity Hospital CologneKölnGermany
  5. 5.Radioonkologie und StrahlentherapieStrahlenzentrum HamburgHamburgGermany
  6. 6.Department of Radiation OncologyUniversity Hospital FreiburgFreiburgGermany
  7. 7.Department of Radiation OncologyUniversity of WürzburgWürzburgGermany
  8. 8.Department of Radiation OncologyUniversity Hospital ZurichZürichSwitzerland
  9. 9.Klinik für Strahlentherapie und Radio-OnkologieHelios-Klinikum WuppertalWuppertalGermany

Personalised recommendations