Strahlentherapie und Onkologie

, Volume 190, Issue 8, pp 732–738 | Cite as

Biologically effective dose and definitive radiation treatment for localized prostate cancer

Treatment gaps do affect the risk of biochemical failure
  • P. SanpaoloEmail author
  • V. Barbieri
  • D. Genovesi
Original article


Background and purpose

It is not clear if prolongation of definitive external radiation therapy for prostate cancer has an effect on biochemical failure. The aim of this work was to evaluate whether the biologically effective dose (BED), and in particular the duration of radiotherapy, intended as overall treatment time, has an effect on biochemical failure rates and to develop a nomogram useful to predict the 6-year probability of biochemical failure.

Patients and methods

A total of 670 patients with T1–3 N0 prostate cancer were treated with external beam definitive radiotherapy, to a total dose of 72–79.2 Gy in 40–44 fractions. The computed BED values were treated with restricted cubic splines. Variables were checked for colinearity using Spearman’s test. The Kaplan–Meier method was used to calculate freedom from biochemical relapse (FFBR) rates. The Cox regression analysis was used to identify prognostic factors of biochemical relapse in the final most performing model and to create a nomogram. Concordance probability estimate and calibration methods were used to validate the nomogram.


Neoadjuvant and concomitant androgen deprivation was administered to 475 patients (70 %). The median follow-up was 80 months (range 20–129 months). Overall, the 6-year FFBR rate was 88.3 %. BED values were associated with higher biochemical failure risk. Age, iPSA, risk category, and days of radiotherapy treatment were independent variables of biochemical failure.


A prolongation of RT (lower BED values) is associated with an increased risk of biochemical failure. The nomogram may be helpful in decision making for the individual patient.


Prostate cancer External beam radiotherapy Biologically effective dose Linear-quadratic model Nomogram 

Biologisch effektive Dosis und definitiven Strahlentherapie des lokalisierten Prostatakarzinoms

Behandlungslücken beeinflussen das Risiko eines biochemischen Versagens


Hintergrund und Ziele

Es ist nicht geklärt, ob die Verlängerung einer definitiven Strahlentherapie bei der Behandlung von Prostatakarzinompatienten einen Effekt auf das biochemische Versagen hat. Die vorliegende Studie hat das Ziel zu evaluieren, ob biologisch die effektive Dosis und insbesondere die Gesamtdauer der Behandlung eine Wirkung auf das biochemisches Rezidiv haben könnte. Ferner wurde ein Nomogramm zur Vorhersage der 6-Jahres-Wahrscheinlichkeit von biochemischem Versagen entwickelt.

Patienten und Methoden

Insgesamt erhielten 670 Patienten im Tumorstadium T1–3, N0, eine Strahlentherapie mit einer Gesamtdosis von 72–79,2 Gy in 40–44 Fraktionen. Errechnete Werte der biologisch effektiven Dosis (BED) wurden mittels begrenzten kubischen Splines bearbeitet. Variablen wurden mit Spearman-Test hinsichtlich Kollinearität untersucht. Zur Abschätzung der Rate an „freedom from biochemical relapse” (Freiheit von biochemischen Versagen, FFBR) wurde die Kaplan-Meier-Methode angewendet. Mittels Cox-Regression wurden anhand des letzten am besten funktionierenden Models prognostische Faktoren für biochemisches Versagen identifiziert sowie ein Nomogramm etabliert. Durch Schätzung der Konkordanzwahrscheinlichkeit und mithilfe von Kalibrationsmethoden wurde das Nomogramm validiert.


Es erhielten 475 Patienten (70 %) neoadjuvant und begleitend eine Androgendeprivation. Der mediane Follow-up betrug 80 Monate (20–129). Insgesamt betrug die 6-Jahres-FFBR-Rate 88,3 %. BED-Werte waren mit höherem Risiko eines biochemischen Versagens assoziiert. Alter, initialer Wert des prostataspezifischen Antigens (PSA), Risikokategorie und Zeitraum der Strahlentherapie erwiesen sich als unabhängige Variable in Bezug auf biochemisches Versagen.


Eine Verlängerung der Strahlentherapie (niedrige BED-Werte) ist mit einem steigenden Risiko eines biochemischen Versagen assoziiert. Das Nomogramm kann als Entscheidungshilfe in Bezug auf einzelne Patienten hilfreich sein.


Prostatakarzinom Strahlentherapie Biologisch effective Dosis Linearquadratisches Modell Nomogramm 



The authors thank Dr. Loreta Sanpaolo for helping us with this manuscript and the editor and reviewers for their helpful comments.

Compliance with ethical guidelines

Conflict of interest

P. Sanpaolo, V. Barbieri, and D. Genovesi state that there are no conflicts of interest.


  1. 1.
    Duncan W, MacDougall RH, Kerr GR (1996) Adverse effect of treatment gaps in the outcome of radiotherapy for laryngeal cancer. Radiother Oncol 41:203–207PubMedCrossRefGoogle Scholar
  2. 2.
    Chatani M, Matayoshi Y, Masaki N et al (1997) Radiation therapy for early glottic carcinoma (T1N0M0). Strahlenther Onkol 173:502–506PubMedCrossRefGoogle Scholar
  3. 3.
    Manapov F, Klöcking S, Niyazi M et al (2012) Chemoradiotherapy duration correlates with overall survival in limited disease SCLC patients with poor initial performance status who successfully completed multimodality treatment. Strahlenther Onkol 188:29–34PubMedCrossRefGoogle Scholar
  4. 4.
    D’Ambrosio DJ, Li T, Horwitz EM et al (2008) Does treatment duration affect outcome after radiotherapy for prostate cancer? Int J Radiat Oncol Biol Phys 72:1402–1407PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Thames HD, Kuban D, Levy LB et al (2010) The role of overall treatment time in the outcome of radiotherapy of prostate cancer: an analysis of biochemical failure in 4839 men treated between 1987 and 1995. Radiother Oncol 96:6–12PubMedCrossRefGoogle Scholar
  6. 6.
    Lai PP, Pilepich MV, Krall JM et al (1991) The effect of overall treatment time on the outcome of definitive radiotherapy for localized prostate carcinoma: the Radiation Therapy Oncology Group 75-06 experience. Int J Radiat Oncol Biol Phys 21:925–933PubMedCrossRefGoogle Scholar
  7. 7.
    Zelefsky MJ, Leibel SA, Gaudin SB et al (1998) Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 41:491–500PubMedCrossRefGoogle Scholar
  8. 8.
    Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694PubMedCrossRefGoogle Scholar
  9. 9.
    Dale RG (1985) The application of the linear quadratic theory to fractionated and protracted radiotherapy. Br J Radiol 59:515–528CrossRefGoogle Scholar
  10. 10.
    Williams SG, Taylor JMG, Liu N et al (2007) Use of individual fraction size data from 3756 patients to directly determine the ratio of prostate cancer. Int J Radiat Oncol Biol Phys 68:24–33PubMedCrossRefGoogle Scholar
  11. 11.
    Miles EF, Lee WR (2008) Hypofractionation for prostate cancer: a critical review. Semin Radiat Oncol 18:41–47PubMedCrossRefGoogle Scholar
  12. 12.
    Lukka H, Hayter C, Julian JA et al (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23:6132–6138PubMedCrossRefGoogle Scholar
  13. 13.
    Yeoh EE, Fraser RJ, McGowan RE et al (2003) Evidence for efficacy without increased toxicity of hypofractionated radiotherapy for prostate carcinoma: early results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 55:943–955PubMedCrossRefGoogle Scholar
  14. 14.
    Barbieri V, Sanpaolo P, Genovesi D (2011) Interval between breast-conserving surgery and start of radiation therapy in early-stage breast cancer is not predictive of local recurrence: a single-institution experience. Clin Breast Cancer 11:114–120PubMedCrossRefGoogle Scholar
  15. 15.
    Dale RG, Henfry JH, Jones B (2002) Practical methods for compensating for missed treatment days in radiotherapy, with particular reference to head and neck schedule. Clin Oncol 14:382–393CrossRefGoogle Scholar
  16. 16.
    Roach M III, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974PubMedCrossRefGoogle Scholar
  17. 17.
    Brenner DJ, Hall ET (1999) Fractionation and protraction of radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys 43:1095–1101PubMedCrossRefGoogle Scholar
  18. 18.
    Hiratsuka J, Yoshimasa J, Yoshida K et al (2004) Clinical results of combined treatment conformal high dose rate iridium-192 brachytherapy and external beam radiotherapy using staging lymphadenectomy for localized prostate cancer. Int J Radiat Oncol Biol Phys 59:684–690PubMedCrossRefGoogle Scholar
  19. 19.
    Harrell FE, Lee KL, Mark BD (1996) Multivariate prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387PubMedCrossRefGoogle Scholar
  20. 20.
    Gonen M, Heller G (2005) Concordance probability and discriminatory power in proportional hazard regression. Biometrika 92:965–970CrossRefGoogle Scholar
  21. 21.
    Horwitz EM, Vicini FA, Ziaja EL et al (1997) An analysis of clinical and treatment related prognostic factors on outcome using biochemical control as an end-point in patients with prostate cancer treated with external beam irradiaton. Radiother Oncol 44:223–228PubMedCrossRefGoogle Scholar
  22. 22.
    Liauw SL, Liauw SH (2011) Prolongation of total treatment time because of infrequently missed days of treatment is not associated with inferior biochemical outcome after dose-escalated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 81:751–757PubMedCrossRefGoogle Scholar
  23. 23.
    Miralbell R, Robert SA, Zubizarreta E et al (2012) Dose-fraction sensitivity of prostate cancer deduced from radiotherapy outcomes of 5969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys 82:e17–e24PubMedCrossRefGoogle Scholar
  24. 24.
    Sun L, Cabarcas SM, Farrar WL (2011) Radioresistance and cancer stem cells: survival of the fittest. J Carcinogene Mutagene S1:004. doi:10.4172/2157-2518.S1-004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Radiation Oncology DepartmentCROBRionero in VultureItaly
  2. 2.Radiation Oncology Department“G. D’Annunzio” UniversityChietiItaly

Personalised recommendations