Strahlentherapie und Onkologie

, Volume 190, Issue 7, pp 636–645 | Cite as

Prognostic and predictive value of p-Akt, EGFR, and p-mTOR in early breast cancer

  • Georgios Lazaridis
  • Sofia Lambaki
  • Georgia Karayannopoulou
  • Anastasia G. Eleftheraki
  • Irene Papaspirou
  • Mattheos Bobos
  • Ioannis Efstratiou
  • George Pentheroudakis
  • Nikolaos Zamboglou
  • George Fountzilas
Original article


Background and purpose

There are scarce data available on the prognostic/predictive value of p-Akt and p-mTOR protein expression in patients with high-risk early breast cancer.

Patients and methods

Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 997 patients participating in two adjuvant phase III trials were assessed for EGFR, PTEN, p-Akt, p-mTOR protein expression, and PIK3CA mutational status. These markers were evaluated for associations with each other and with selected patient and tumor characteristics, immunohistochemical subtypes, disease-free survival (DFS), and overall survival (OS).


p-mTOR protein expression was negatively associated with EGFR and positively associated with PTEN, with p-Akt473, and with the presence of PIK3CA mutations. EGFR expression was positively associated with p-Akt473, p-Akt308, and PIK3CA wild-type tumors. Finally, p-Akt308 was positively associated with p-Akt473 expression. In univariate analysis, EGFR (p = 0.016) and the coexpression of EGFR and p-mTOR (p = 0.015) were associated with poor OS. Among patients with p-Akt308-negative or low-expressing tumors, those treated with hormonal therapy were associated with decreased risk for both relapse and death (p = 0.013 and p < 0.001, respectively). In the subgroup of patients with locoregional relapse, positive EGFR and mTOR protein expression was found to be associated with increased (p = 0.034) and decreased (p < 0.001) risk for earlier relapse, respectively. In multivariate analysis, low levels of p-Akt308 and the coexpression of EGFR and p-mTOR retained their prognostic value.


Low protein expression of p-Akt308 was associated with improved DFS and OS among patients treated with hormonal therapy following adjuvant chemotherapy. Coexpression of EGFR and p-mTOR was associated with worse OS.


p-mTOR p-Akt Breast cancer Prognostic value Predictive value 

Prognostischer und prädiktiver Werte von p-Akt, EGFR und p-mTOR beim Mammakarzinom im Frühstadium



Geringe Daten existieren über den prognostischen/prädiktiven Wert der p-Akt- und p-mTOR-Proteinexpression bei Patienten mit “High-risk”-Mammakarzinom im Frühstadium.

Patienten und Methoden

Formalinfixierte und in Paraffin eingebettete (FFPE) Tumorgewebeproben von 997 Patienten, welche im Rahmen von 2 adjuvanten Phase-III-Studien zytostatisch behandelt wurden, wurden auf EGFR, PTEN, p-Akt, pmTOR und PIK3CA-Mutationsstatus untersucht. Diese Marker wurden in Assoziation mit ausgewählten Patienten- und Tumorcharakteristika, immunhistochemischen Mammakarzinomsubtypen, dem krankheitsfreien Überleben (DFS) sowie dem Gesamtüberleben (OS) evaluiert.


Die Expression von p-mTOR war negativ mit der Expression von EGFR, jedoch signifikant positiv mit PTEN und p-Akt473 sowie dem Nachweis von PIK3CA-Mutationen assoziiert. Die EGFR-Expression war signifikant positiv mit der Proteinexpression von p-Akt473 und p-Akt308 sowie PIK3CA-Wildtyp-Tumoren assoziiert. Die p-Akt308-Expression war ebenfalls signifikant positiv mit der Expression von p-Akt473 assoziiert. In der univariaten Analyse war sowohl die EGFR (p = 0,016), als auch die Koexpression von EGFR und p-mTOR (p = 0,015) mit einem schlechteren OS assoziiert. Unter den Patienten mit p-Akt308-negativen oder gering exprimierenden Tumoren konnte bei denjenigen, die mit einer Hormontherapie behandelt wurden, ein signifikant vermindertes Risiko für ein Rezidiv als auch für den Tod (jeweils p = 0,013 und p < 0,001) nachgewiesen werden. In der Subgruppenanalyse von Patienten mit lokoregionärem Rezidiv konnte eine Assoziation von positivem EGFR-Status sowie mTOR-Expression mit einem jeweils erhöhten (p = 0,034) bzw. verminderten (p < 0,001) Risiko für das Auftreten von Frührezidiven nachgewiesen werden. In der multivariaten Analyse behielten die niedrigen p-Akt308-Werte und die Koexpression von EGFR und p-mTOR ihren prognostischen Wert.


Eine niedrige Expression von p-Akt308 bei Patienten, die eine Hormontherapie nach einer adjuvanten Chemotherapie erhielten, war mit einem verbesserten DFS und OS assoziiert. Die Koexpression von EGFR und p-mTOR war mit einem schlechteren OS assoziiert.


p-mTOR p-Akt Mammakarzinom Prognostischer Wert Prädiktiver Wert 



The authors are indebted to all patients and their families for their trust and participation in the HE10/97 and HE10/00 trials and for the provision of biological material for research purposes. The authors also wish to thank all HeCOG personnel (data managers, research assistants, and monitors) for their dedication, M. Moschoni for data coordination, T. Spinari for collection of FFPE tissue blocks, and S. Dallidou for secretarial assistance.

Conflict of interest

G. Lazaridis, S. Lambaki, G. Karayannopoulou, A.G. Eleftheraki, I. Papaspirou, M. Bobos, I. Efstratiou, G. Pentheroudakis, N. Zamboglou, and G. Fountzilas state they are supported by an internal Hellenic Cooperative Oncology Group (HeCOG) translational research grant (HE TRANS_BR).

Supplementary material

66_2014_620_MOESM1_ESM.doc (59 kb)
(DOC 59 kb)
66_2014_620_MOESM2_ESM.doc (217 kb)
(DOC 217 kb)


  1. 1.
    Lassere MN, Johnson KR, Boers M et al (2007) Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema. J rheumatol 34:607–615Google Scholar
  2. 2.
    Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312CrossRefGoogle Scholar
  3. 3.
    Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 357:39–51PubMedCrossRefGoogle Scholar
  4. 4.
    Gomez-Pinillos A, Ferrari AC (2012) mTOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clin North Am 26:483–505, viiPubMedCrossRefGoogle Scholar
  5. 5.
    Cordes N, Rodel F, Rodemann HP (2012) Molecular signaling pathways. Mechanisms and clinical use. Strahlenther Onkol 188(Suppl 3):308–311PubMedCrossRefGoogle Scholar
  6. 6.
    Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529PubMedCrossRefGoogle Scholar
  7. 7.
    Schroeder W, Biesterfeld S, Zillessen S, Rath W (1997) Epidermal growth factor receptor-immunohistochemical detection and clinical significance for treatment of primary breast cancer. Anticancer Res 17:2799–2802PubMedGoogle Scholar
  8. 8.
    Fujita T, Doihara H, Kawasaki K et al (2006) PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br J Cancer 94:247–252PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Razis E, Bobos M, Kotoula V et al (2011) Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res Treat 128:447–456PubMedCrossRefGoogle Scholar
  10. 10.
    Tokunaga E, Kataoka A, Kimura Y et al (2006) The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 42:629–635PubMedCrossRefGoogle Scholar
  11. 11.
    Fountzilas G, Skarlos D, Dafni U et al (2005) Postoperative dose-dense sequential chemotherapy with epirubicin, followed by CMF with or without paclitaxel, in patients with high-risk operable breast cancer: a randomized phase III study conducted by the Hellenic Cooperative Oncology Group. Ann Oncol 16:1762–1771PubMedCrossRefGoogle Scholar
  12. 12.
    Fountzilas G, Dafni U, Gogas H et al (2008) Postoperative dose-dense sequential chemotherapy with epirubicin, paclitaxel and CMF in patients with high-risk breast cancer: safety analysis of the Hellenic Cooperative Oncology Group randomized phase III trial HE 10/00. Ann Oncol 19:853–860PubMedCrossRefGoogle Scholar
  13. 13.
    Gogas H, Dafni U, Karina M et al (2012) Postoperative dose-dense sequential versus concomitant administration of epirubicin and paclitaxel in patients with node-positive breast cancer: 5-year results of the Hellenic Cooperative Oncology Group HE 10/00 phase III Trial. Breast Cancer Res Treat 132:609–619PubMedCrossRefGoogle Scholar
  14. 14.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235PubMedCrossRefGoogle Scholar
  15. 15.
    Hudis CA, Barlow WE, Costantino JP et al (2007) Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol 25:2127–2132PubMedCrossRefGoogle Scholar
  16. 16.
    Altman DG, McShane LM, Sauerbrei W, Taube SE (2012) Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med 10:51PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ueng SH, Chen SC, Chang YS et al (2012) Phosphorylated mTOR expression correlates with poor outcome in early-stage triple negative breast carcinomas. Int J Clinical Exp Pathol 5:806–813Google Scholar
  18. 18.
    Garcia Castro C, Ravina M, Castro V, Salido EC (1993) Expression of epidermal growth factor receptor (proto-oncogene c-erbB-1) and estrogen receptor in human breast carcinoma. An immunocytochemical study of 70 cases. Arch Gynecol Obstet 252:169–177PubMedCrossRefGoogle Scholar
  19. 19.
    Martinazzi M, Crivelli F, Zampatti C, Martinazzi S (1993) Epidermal growth factor receptor immunohistochemistry in different histological types of infiltrating breast carcinoma. J Clin Pathol 46:1009–1010PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Newby JC, A’Hern RP, Leek RD, Smith IE, Harris AL, Dowsett M (1995) Immunohistochemical assay for epidermal growth factor receptor on paraffin-embedded sections: validation against ligand-binding assay and clinical relevance in breast cancer. Br J Cancer 71:1237–1242PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ferrero JM, Ramaioli A, Largillier R et al (2001) Epidermal growth factor receptor expression in 780 breast cancer patients: a reappraisal of the prognostic value based on an eight-year median follow-up. Ann Oncol 12:841–846PubMedCrossRefGoogle Scholar
  22. 22.
    Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S (2002) Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat 71:67–75PubMedCrossRefGoogle Scholar
  23. 23.
    Dittmann K, Mayer C, Rodemann HP (2010) Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther Onkol 186:1–6PubMedCrossRefGoogle Scholar
  24. 24.
    Bose S, Chandran S, Mirocha JM, Bose N (2006) The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol 19:238–245PubMedCrossRefGoogle Scholar
  25. 25.
    Panigrahi AR, Pinder SE, Chan SY, Paish EC, Robertson JF, Ellis IO (2004) The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J Pathol 204:93–100PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou X, Tan M, Stone Hawthorne V et al (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10:6779–6788PubMedCrossRefGoogle Scholar
  27. 27.
    Perez-Tenorio G, Alkhori L, Olsson B et al (2007) PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13:3577–3584PubMedCrossRefGoogle Scholar
  28. 28.
    Sedlmayer F, Sautter-Bihl ML, Budach W et al (2013) DEGRO practical guidelines: radiotherapy of breast cancer I: radiotherapy following breast conserving therapy for invasive breast cancer. Strahlenther Onkol 189:825–833PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Souchon R, Sautter-Bihl ML, Sedlmayer F et al (2014) DEGRO practical guidelines: radiotherapy of breast cancer II: Radiotherapy of non-invasive neoplasia of the breast. Strahlenther Onkol 190:8–16PubMedCrossRefGoogle Scholar
  30. 30.
    Dionysopoulos D, Pavlakis K, Kotoula V et al (2013) Cyclin D1, EGFR, and Akt/mTOR pathway. Potential prognostic markers in localized laryngeal squamous cell carcinoma. Strahlenther Onkol 189:202–214PubMedCrossRefGoogle Scholar
  31. 31.
    Buyse M, Sargent DJ, Grothey A, Matheson A, de Gramont A (2010) Biomarkers and surrogate end points–the challenge of statistical validation. Nat Rev Clin Oncol 7:309–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Georgios Lazaridis
    • 1
  • Sofia Lambaki
    • 1
  • Georgia Karayannopoulou
    • 2
  • Anastasia G. Eleftheraki
    • 3
  • Irene Papaspirou
    • 4
  • Mattheos Bobos
    • 5
  • Ioannis Efstratiou
    • 6
  • George Pentheroudakis
    • 7
  • Nikolaos Zamboglou
    • 8
  • George Fountzilas
    • 1
    • 5
  1. 1.Department of Medical Oncology, “Papageorgiou” HospitalAristotle University of Thessaloniki School of MedicineThessalonikiGreece
  2. 2.Department of PathologyAristotle University of Thessaloniki School of MedicineThessalonikiGreece
  3. 3.Section of BiostatisticsHellenic Cooperative Oncology Group, Data OfficeAthensGreece
  4. 4.Department of PathologyAlexandra HospitalAthensGreece
  5. 5.Laboratory of Molecular OncologyHellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of MedicineThessalonikiGreece
  6. 6.Department of Pathology“Papageorgiou” HospitalThessalonikiGreece
  7. 7.Department of Medical OncologyIoannina University HospitalIoanninaGreece
  8. 8.Department of Radiation OncologyKlinikum OffenbachOffenbachGermany

Personalised recommendations