Advertisement

Strahlentherapie und Onkologie

, Volume 190, Issue 5, pp 453–458 | Cite as

Long-term results of total body irradiation in adults with acute lymphoblastic leukemia

  • Simone MarnitzEmail author
  • Alexander Zich
  • Peter Martus
  • Volker Budach
  • Ulrich Jahn
  • Oliver Neumann
  • Renate Arnold
Original article

Abstract

Purpose

The aim of this chart review of adult patients treated for acute lymphoblastic leukemia (ALL) with total body irradiation (TBI) was to evaluate early and late toxicity and long-term outcome.

Patients and methods

A total of 110 adult patients (34 ± 12 years) with ALL underwent TBI (6 fractions of  2 Gy for a total of 12 Gy) as a part of the treatment regimen before transplantation. Treatment-related toxicity, mortality, and hematologic outcome are reported.

Results

Mean follow-up was 70 months. The 2- and 5-year leukemia-free survival rates were 78 and 72 %, respectively. In all, 29 % (32/110) patients suffered from medullary recurrence after a median time of 7 months. Gender was the only statistically significant prognostic factor in terms of overall survival in favor of female patients. Treatment-related mortality and overall survival after 2 and 5 years were 16 and 22 %, and 60 and 52.7 %, respectively. The most frequent late reaction wascGVHD of the skin (n = 33, 30 %). In addition, 15.5 % (17/110 patients) suffered pulmonary symptoms, and 6 patients developed lung fibrosis. Eyes were frequently affected by the radiation (31/110 = 28 %); 12 of 110 patients (11 %) presented with symptoms from osteoporosis, 5 of 110 patients (4.5 %) developed hypothyreosis and 2 patients diabetes mellitus. Of the male patients, 11 % reported erectile dysfunction or loss of libido, while 2 of 36 women reported menopausal syndrome at the mean time of 28 months after treatment with requirement for substitution. No women became pregnant after treatment. No acute or late cardiac toxicities were documented in our patients. No secondary malignancies were documented.

Conclusion

Although hematologic outcome was in the upper range of that reported in the literature, treatment-related mortality (TRM) and medullary recurrences remain a challenge. Sophisticated radiation techniques allow for decreasing toxicity to certain organs and/or dose escalation to the bone marrow in highly selected patients in order to improve therapeutic breadth.

Keywords

Precursor cell lymphoblastic leukeumialymphoma Adults Total body irradiation Toxicity Treatment outcome 

Langzeitergebnisse der Ganzkörperbestrahlung bei Erwachsenen mit akuter lymphatischer Leukämie

Zusammenfassung

Ziel

Ziel der Arbeit war die Auswertung der Akut- und Spättoxizität sowie der Therapieergebnisse erwachsener Patienten mit akuter lymphatischer Leukämie (ALL) nach Ganzkörperbestrahlung ("total body irradiation", TBI) als Teil des Therapiekonzepts.

Patienten und Methode

Im Rahmen einer retrospektiven Auswertung von 110 erwachsenen Patienten (34 ± 12 Jahre) mit ALL, die eine TBI (6-mal 2 Gy–12 Gy) vor Transplantation erhalten hatten, werden therapiebedingte Akut- und Spättoxizität, Mortalität und Therapieergebnisse dargestellt.

Ergebnisse

Die mittlere Nachbeobachtungszeit betrug 70 Monate. Die leukämiefreien 2- und 5-Jahres-Überlebensraten betragen 78 bzw. 72 %. Nach im Median 7 Monaten erlitten 29 % (32/110) der Patienten ein medulläres Rezidiv. Das Geschlecht war der einzige statistisch signifikante Faktor bezüglich des Gesamtüberlebens zugunsten der weiblichen Patienten. Die therapiebedingte Mortalitäts- und die Gesamtüberlebensraten nach 2 und 5 Jahren waren 16 und 22 %, bzw. 60 und 52,7 %. Die chronische "Graft-versus-host"-Erkrankung (cGVHD) der Haut war die häufigste Spätreaktion (n = 33, 30 %), gefolgt von 15,5 % (17/110) pulmonaler cGVHD. Eine Lungenfibroseentwickelten 6 Patienten. Ophthalmologische Symptome berichteten 28 % (31/110); 11 % der Patienten (12/110) entwickelten eine symptomatische Osteoporose, 5/110 (4,5 %) eine Hypothyreose und 2 Patienten einen Diabetes mellitus. Von den männlichen Patienten litten 11 % unter erektiler Dysfunktion oder Libidoverlust nach Therapie. Wegen menopausaler Beschwerden benötigten 2/36 Frauen nach einer mittleren Zeit von 28 Monaten nach Therapie eine Hormonersatztherapie. Keine Patientin wurde nach Therapie schwanger. Es wurde weder eine akute noch eine späte kardiale Toxizität dokumentiert, ebenso kein Sekundärmalignom.

Schlussfolgerung

Obwohl das Therapieergebnis des vorliegenden Kollektivs im oberen Bereich der Literatur einzuordnen ist, bleiben sowohl die therapiededingte Mortalität als auch die Rate an medullären Rezidiven eine Herausforderung in der Therapie der adulten ALL. Moderne Techniken erlauben es, die Toxizität in bestimmten Organen selektiv zu senken und/oder die Dosis im Knochenmark für selektionierte Patienten zu eskalieren. Hier könnten in der Zukunft Ansätze vorhanden sein, die therapeutische Breite zu verbessern.

Schlüsselwörter

Precursor cell lymphoblastic leukeumialymphoma Erwachsene Total body irradiation Toxizität Outcome 

Notes

Acknowledgment

We thank S. Diehl (Data Bank Manager) for her support.

Compliance with ethical guidelines

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest in relation to this article.

References

  1. 1.
    Gerstein J, Meyer A, Sykora KW et al (2009) Long-term renal toxicity in children following fractionated total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT). Strahlenther Onkol 185:751–755PubMedCrossRefGoogle Scholar
  2. 2.
    Linsenmeier C, Thoennessen D, Negretti L et al (2010) Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation. Strahlenther Onkol 186:614–620PubMedCrossRefGoogle Scholar
  3. 3.
    Pidala J, Djulbegovic B, Anasetti C et al (2011) Allogeneic hematopoietic cell transplantation for adult acute lymphoblastic leukemia (ALL) in first complete remission. Cochrane Database Syst Rev 10:CD008818PubMedGoogle Scholar
  4. 4.
    Thygesen LC, Nielsen OJ, Johansen C (2009) Trends in adult leukemia incidence and survival in Denmark, 1943–2003. Cancer Causes Control 20:1671–1680PubMedCrossRefGoogle Scholar
  5. 5.
    Hill-Kayser CE, Plastaras JP, Tochner Z, Glatstein E (2011) TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions. Bone Marrow Transplant 46:475–484PubMedCrossRefGoogle Scholar
  6. 6.
    Wong JY, Forman S, Somlo G et al (2013) Dose escalation of total marrow irradiation with concurrent chemotherapy in patients with advanced acute leukemia undergoing allogeneic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys 85:148–156PubMedCrossRefGoogle Scholar
  7. 7.
    Ribera JM (2011) Acute lymphoblastic leukemia in adults. Pediatr Rep 3(Suppl 2):e1PubMedCentralPubMedGoogle Scholar
  8. 8.
    Tomblyn MB, Arora M, Baker KS et al (2009) Myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia: analysis of graft sources and long-term outcome. J Clin Oncol 27:3634–3641PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mori T, Aisa Y, Kato J et al (2012) Safety and efficacy of total body irradiation, cyclophosphamide, and cytarabine as a conditioning regimen for allogeneic hematopoietic stem cell transplantation in patients with acute lymphoblastic leukemia. Am J Hematol 87:349–353PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas X, Boiron JM, Huguet F et al (2004) Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 22:4075–4086PubMedCrossRefGoogle Scholar
  11. 11.
    Kelsey CR, Horwitz ME, Chino JP et al (2011) Severe pulmonary toxicity after myeloablative conditioning using total body irradiation: an assessment of risk factors. Int J Radiat Oncol Biol Phys 81:812–818PubMedCrossRefGoogle Scholar
  12. 12.
    Abboud I, Porcher R, Robin M, de Latour RP et al(2009) Chronic kidney dysfunction in patients alive without relapse 2 years after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 15:1251–1257PubMedCrossRefGoogle Scholar
  13. 13.
    Bolling T, Kreuziger DC, Ernst I et al (2011) Retrospective, monocentric analysis of late effects after Total Body Irradiation (TBI) in adults. Strahlenther Onkol 187:311–315PubMedCrossRefGoogle Scholar
  14. 14.
    de Vathaire FEl-Fayech, Thomas-Teinturier Cet al (2012) Radiation dose to the pancreas and risk of diabetes mellitus in childhood cancer survivors: a retrospective cohort study. Lancet Oncol 13:1002–1010PubMedCrossRefGoogle Scholar
  15. 15.
    Jadoul P, Donnez J (2012) How does bone marrow transplantation affect ovarian function and fertility? Curr Opin Obstet Gynecol 24:164–171PubMedCrossRefGoogle Scholar
  16. 16.
    Kal HB, van Kempen-Harteveld ML (2006) Renal dysfunction after total body irradiation: dose-effect relationship. Int J Radiat Oncol Biol Phys 65:1228–1232PubMedCrossRefGoogle Scholar
  17. 17.
    Phipps S, Rai SN, Leung WH, Lensing S, Dunavant M (2008) Cognitive and academic consequences of stem-cell transplantation in children. J Clin Oncol 26:2027–2033PubMedCrossRefGoogle Scholar
  18. 18.
    Tichelli A, Bhatia S, Socie G (2008) Cardiac and cardiovascular consequences after haematopoietic stem cell transplantation. Br J Haematol 142:11–26PubMedCrossRefGoogle Scholar
  19. 19.
    Belkacemi Y, Ozsahin M, Pene F et al (1996) Cataractogenesis after total body irradiation. Int J Radiat Oncol Biol Phys 35:53–60PubMedCrossRefGoogle Scholar
  20. 20.
    Radhakrishnan K, Bishop J, Jin Z et al(2013) Risk factors associated with liver injury and impact of liver injury on transplantation-related mortality in pediatric recipients of allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 19:912–917PubMedCrossRefGoogle Scholar
  21. 21.
    Pommier P, Sunyach MP, Pasteuris C et al (2009) Second cancer after total-body irradiation (TBI) in childhood. Strahlenther Onkol 185(Suppl 2):13–16PubMedCrossRefGoogle Scholar
  22. 22.
    Kirchheiner K, Czajka A, Ponocny-Seliger E et al (2013) Physical and psychosocial support requirements of 1,500 patients starting radiotherapy. Strahlenther Onkol 189:424–429PubMedCrossRefGoogle Scholar
  23. 23.
    Muller HL, Gebhardt U, Warmuth-Metz M, Pietsch T, Sorensen N, Kortmann RD; study committee of HITE (2012) Meningioma as second malignant neoplasm after oncological treatment during childhood. Strahlenther Onkol 188:438–441PubMedCrossRefGoogle Scholar
  24. 24.
    Goldstone AH, Richards SM, Lazarus HM et al (2008) In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood 111:1827–1833PubMedCrossRefGoogle Scholar
  25. 25.
    Sebban C, Lepage E, Vernant JP et al (1994) Allogeneic bone marrow transplantation in adult acute lymphoblastic leukemia in first complete remission: a comparative study. French Group of Therapy of Adult Acute Lymphoblastic Leukemia. J Clin Oncol 12:2580–2587PubMedGoogle Scholar
  26. 26.
    Ribera JM, Oriol A, Bethencourt C et al (2005) Comparison of intensive chemotherapy, allogeneic or autologous stem cell transplantation as post-remission treatment for adult patients with high-risk acute lymphoblastic leukemia. Results of the PETHEMA ALL-93 trial. Haematologica 90:1346–1356PubMedGoogle Scholar
  27. 27.
    Takeuchi J, Kyo T, Naito K et al (2002) Induction therapy by frequent administration of doxorubicin with four other drugs, followed by intensive consolidation and maintenance therapy for adult acute lymphoblastic leukemia: the JALSG-ALL93 study. Leukemia 16:1259–1266PubMedCrossRefGoogle Scholar
  28. 28.
    Hunault M, Harousseau JL, Delain M et al (2004) Better outcome of adult acute lymphoblastic leukemia after early genoidentical allogeneic bone marrow transplantation (BMT) than after late high-dose therapy and autologous BMT: a GOELAMS trial. Blood 104:3028–3037PubMedCrossRefGoogle Scholar
  29. 29.
    Ifrah N, Witz F, Jouet JP et al (1999) Intensive short term therapy with granulocyte-macrophage-colony stimulating factor support, similar to therapy for acute myeloblastic leukemia, does not improve overall results for adults with acute lymphoblastic leukemia. GOELAMS Group. Cancer 86:1496–1505PubMedCrossRefGoogle Scholar
  30. 30.
    Labar B, Suciu S, Zittoun R et al (2004) Allogeneic stem cell transplantation in acute lymphoblastic leukemia and non-Hodgkin’s lymphoma for patients < or = 50 years old in first complete remission: results of the EORTC ALL-3 trial. Haematologica 89:809–817PubMedGoogle Scholar
  31. 31.
    Fielding AK, Rowe JM, Richards SM et al (2009) Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood 113:4489–4496PubMedCrossRefGoogle Scholar
  32. 32.
    Attal M, Blaise D, Marit G et al (1995) Consolidation treatment of adult acute lymphoblastic leukemia: a prospective, randomized trial comparing allogeneic versus autologous bone marrow transplantation and testing the impact of recombinant interleukin-2 after autologous bone marrow transplantation. BGMT Group. Blood 86:1619–1628PubMedGoogle Scholar
  33. 33.
    De Witte TA, Preijers F et al (1994) Role of allogenic bone marrow transplantation in adolescent or adult patients with acute lymphoblastic leukaemia or lymphoblastic lymphoma in first remission. Bone Marrow Transplant 14:767–774PubMedGoogle Scholar
  34. 34.
    Bernasconi C, Lazzarino M, Morra E et al (1992) Early intensification followed by allo-BMT or auto-BMT or a second intensification in adult ALL: a randomized multicenter study. Leukemia 6(Suppl 2):204–208PubMedGoogle Scholar
  35. 35.
    Cornelissen JJ, van der Holt B, Verhoef GE et al (2009) Myeloablative allogeneic versus autologous stem cell transplantation in adult patients with acute lymphoblastic leukemia in first remission: a prospective sibling donor versus no-donor comparison. Blood 113:1375–1382PubMedCrossRefGoogle Scholar
  36. 36.
    Ueda T, Miyawaki S, Asou N et al (1998) Response-oriented individualized induction therapy with six drugs followed by four courses of intensive consolidation, 1 year maintenance and intensification therapy: the ALL90 study of the Japan Adult Leukemia Study Group. Int J Hematol 68:279–289PubMedCrossRefGoogle Scholar
  37. 37.
    Clift RA, Buckner CD, Appelbaum FR et al (1998) Long-term follow-Up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood 92:1455–1456PubMedGoogle Scholar
  38. 38.
    Baker KS, Ness KK, Weisdorf D et al (2010) Late effects in survivors of acute leukemia treated with hematopoietic cell transplantation: a report from the Bone Marrow Transplant Survivor Study. Leukemia 24:2039–2047PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Adams MJ, Grant EJ, Kodama K et al (2012) Radiation dose associated with renal failure mortality: a potential pathway to partially explain increased cardiovascular disease mortality observed after whole-body irradiation. Radiat Res 177:220–228PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Chang A, Hingorani S, Kowalewska J et al (2007) Spectrum of renal pathology in hematopoietic cell transplantation: a series of 20 patients and review of the literature. Clin J Am Soc Nephrol 2:1014–1023PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Simone Marnitz
    • 1
    Email author
  • Alexander Zich
    • 1
  • Peter Martus
    • 3
  • Volker Budach
    • 1
  • Ulrich Jahn
    • 1
  • Oliver Neumann
    • 1
  • Renate Arnold
    • 2
  1. 1.Department of Radiation OncologyCharité University MedicineBerlinGermany
  2. 2.Department of Hematology and Oncology, Bone Marrow Transplant UnitCharité University Medicine, Campus CVKBerlinGermany
  3. 3.Institute of Clinical Epidemiology and Applied BiostatisticsUniversity TübingenTübingenGermany

Personalised recommendations