Advertisement

Strahlentherapie und Onkologie

, Volume 190, Issue 5, pp 472–479 | Cite as

The effect of cilengitide in combination with irradiation and chemotherapy in head and neck squamous cell carcinoma cell lines

  • G. Heiduschka
  • C. Lill
  • S. Schneider
  • R. Seemann
  • G. Kornek
  • R. Schmid
  • U. Kotowski
  • D. Thurnher
Original article

Abstract

Background

Integrins are highly attractive targets in oncology due to their involvement in angiogenesis in a wide spectrum of cancer entities. Among several integrin inhibitors under clinical evaluation, cilengitide is the most promising compound. However, little is known about the cellular processes induced during cilengitide therapy in combination with irradiation and cisplatin in head and neck squamous cell carcinoma (HNSCC).

Materials and methods

The cytostatic effect of cilengitide was assessed by proliferation assay in the three HNSCC cell lines SCC25, FaDu and CAL27. Combination experiments with cisplatin and irradiation were performed. Possible synergistic effects were calculated in combination index (CI) analyses. Colony forming inhibition was investigated in clonogenic assays. Real-time PCR arrays were used to evaluate target protein gene expression patterns. Flow cytometry was used to detect apoptosis.

Results

Used alone, cilengitide has only minor cytotoxic effects in HNSCC cell lines. However, combination with cisplatin resulted in synergistic growth inhibition in all three cell lines. Irradiation showed synergism in short-term experiments and in colony forming assays, an additive effect was detected. Real-time PCR assay detected downregulation of the antiapoptotic protein Bcl-2 after exposure of cells to cilengitide.

Conclusion

Cilengitide in combination with cisplatin and irradiation may be a feasible option for the treatment of patients with head and neck cancer. However, further investigations are required to understand the exact mechanism that leads to synergistic cytotoxicity.

Keywords

Cytotoxicity Cell lines Drug synergism Real-time PCR Clonogenic assays 

Die Wirkung von Cilengitide in Kombination mit Bestrahlung und Chemotherapie bei Zelllinien des Kopf-Hals-Plattenepithelkarzinoms

Zusammenfassung

Hintergrund

Durch ihre Rolle bei der Angiogenese sind Integrine ein attraktives Ziel in der onkologischen Forschung. Der derzeit vielversprechendste Inhibitor dieser Moleküle ist Cilengitide, welches bereits in klinischen Studien getestet wird. Dennoch ist erst wenig über die zellulären Vorgänge bekannt, welche durch Cilengitide in Kopf-Hals-Karzinomen (HNSCC) insbesondere in Kombination mit Strahlentherapie und Cisplatin ausgelöst werden.

Material und Methoden

Der zytostatische Effekt von Cilengitide wurde in drei Kopf-Hals-Zelllinien SCC25, CAL27 und FaDu mittels Proliferationsassay überprüft. Mit Cisplatin und Bestrahlung wurden Kombinationsexperimente durchgeführt. Mögliche Synergien wurden mittels Kombinationsindex-(CI-)Analyse berechnet. Der Einfluss auf die Koloniebildung wurde in Koloniebildungsexperimenten gezeigt. In Real-time-PCR-Arrays wurden die Expressionsmuster von bekannten Zielproteinen untersucht. Mittels FACS („flow cytometry“) wurde nach Apoptose gesucht.

Resultate

Cilengitide selbst hatte nur eine geringe direkte Wirkung auf das Wachstum unserer Zelllinien. Die Kombination mit Cisplatin jedoch zeigte eine synergistische Wachstumshemmung. In Kurzzeitexperimenten war Cilengitide in Kombination mit Bestrahlung synergistisch. Auch in den Koloniebildungsassays konnte ein additiver Effekt nachgewiesen werden. Das antiapoptotische Bcl-2-Protein wurde nach Exposition mit Cilengitide vermindert exprimiert.

Schlussfolgerung

Cilengitide in Kombination mit Cisplatin und Bestrahlung könnte eine sinnvolle Behandlungsoption für Patienten mit Kopf-Hals-Karzinomen sein. Dafür sind jedoch noch weitere Experimente notwendig, auch um den exakten Mechanismus der Synergie zu verstehen.

Schlüsselwörter

Zytotoxizität Zelllinien Medikamentensynergismus Real-time-PCR Klonogener Assay 

Notes

Compliance with ethical guidelines

Conflict of interest

G. Heiduschka, C. Lill, S. Schneider, R. Seemann, G. Kornek, R. Schmid, U. Kotowski and D. Thurnher state that there are no conflicts of interest.

References

  1. 1.
    Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRefGoogle Scholar
  2. 2.
    Erpolat OP, Gocun PU, Akmansu M et al (2012) Hohe Expression von nukleärem Survivin und Aurora-B als prädiktive Marker für das schlechte Gesamtüberleben bei Patienten mit Plattenepithelkarzinomen der Kopf- und Halsregion. Strahlenther Onkol 188:248–254PubMedCrossRefGoogle Scholar
  3. 3.
    Maurer J, Hipp M, Schäfer C, Kölbl O (2011) Dysphagia. Strahlenther Onkol 187:744–749PubMedCrossRefGoogle Scholar
  4. 4.
    Denaro N, Russi EG, Colantonio I et al (2012) The role of antiangiogenic agents in the treatment of head and neck cancer. The International Society for Cellular 83:108–116Google Scholar
  5. 5.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  6. 6.
    Hagen tenTLM, Seynhaeve ALB, Wiel-Ambagtsheer GAdeetal (2012) The αVb3/αVb5 integrin inhibitor cilengitide augments tumor response to melphalan isolated limb perfusion in a sarcoma model. Int J Cancer 132:2694–2704PubMedCrossRefGoogle Scholar
  7. 7.
    Brooks PC, Montgomery AM, Rosenfeld M et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedCrossRefGoogle Scholar
  8. 8.
    Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRefGoogle Scholar
  9. 9.
    Brooks PC, Strömblad S, Klemke R et al (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Beer AJ, Grosu AL, Carlsen J et al (2007) [18F]Galacto-RGD positron emission tomography for imaging of v 3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6610–6616PubMedCrossRefGoogle Scholar
  11. 11.
    Fabricius E-M (2010) Immunohistochemical analysis of integrins αvb3, αvb5 and α5b1, and their ligands, fibrinogen, fibronectin, osteopontin and vitronectin, in frozen sections of human oral head and neck squamous cell carcinomas. Exp Ther Med 2:9–19PubMedCentralPubMedGoogle Scholar
  12. 12.
    Reardon DA, Nabors LB, Stupp R, Mikkelsen T (2008) Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs 17:1225–1235PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    MacDonald TJ, Stewart CF, Kocak M et al (2008) Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J Clin Oncol 26:919–924PubMedCrossRefGoogle Scholar
  14. 14.
    Stupp R, Hegi ME, Neyns B et al (2010) Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol 28:2712–2718PubMedCrossRefGoogle Scholar
  15. 15.
    Gilbert MR, Kuhn J, Lamborn KR et al (2011) Cilengitide in patients with recurrent glioblastoma: the results of NABTC 03-02, a phase II trial with measures of treatment delivery. J Neurooncol 106:147–153PubMedCrossRefGoogle Scholar
  16. 16.
    Nabors LB, Mikkelsen T, Hegi ME et al (2012) A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer 118:5601–5607PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bradley DA, Daignault S, Ryan CJ et al (2010) Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Invest New Drugs 29:1432–1440PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Alva A, Slovin S, Daignault S et al (2010) Phase II study of Cilengitide (EMD 121974, NSC 707544) in patients with non-metastatic castration resistant prostate cancer, NCI-6735. A study by the DOD/PCF prostate cancer clinical trials consortium. Invest New Drugs 30(2):749–757PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kim KB, Prieto V, Joseph RW et al (2012) A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res 22:294–301PubMedCrossRefGoogle Scholar
  20. 20.
    Friess H, Langrehr JM, Oettle H et al (2006) A randomized multi-center phase II trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer 6:285PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Raguse J-D, Gath HJ, Bier J et al (2004) Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol 40:228–230PubMedCrossRefGoogle Scholar
  22. 22.
    Vermorken JB, Guigay J, Mesia R et al (2011) Phase I/II trial of cilengitide with cetuximab, cisplatin and 5-fluorouracil in recurrent and/or metastatic squamous cell cancer of the head and neck: findings of the phase I part. Br J Cancer 104:1691–1696PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Vormittag L, Lemaire C, Radonjic D et al (2012) Re-irradiation kombiniert mit Capecitabin bei lokal rezidivierten Plattenepithelkarzinomen der Kopf-Hals-Region. Strahlenther Onkol 188:235–242PubMedCrossRefGoogle Scholar
  24. 24.
    Kotowski U, Heiduschka G, Brunner M et al (2011) Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane. Strahlenther Onkol 187:575–580PubMedCrossRefGoogle Scholar
  25. 25.
    Heiduschka G, Erovic BM, Vormittag L et al (2009) 7beta-hydroxycholesterol induces apoptosis and regulates cyclooxygenase 2 in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 135:261–267PubMedCrossRefGoogle Scholar
  26. 26.
    Franken NAP, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319PubMedCrossRefGoogle Scholar
  27. 27.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  28. 28.
    Serono EMD: Phase III trial of cilengitide did not meet primary endpoint in patients with newly diagnosed glioblastoma [Internet] (2013) http://www.emdserono.com. http://www.emdserono.com/cmg.emdserono_us/en/images/EMD%20Serono%20CENTRICResults_FINAL2-25-13_tcm115_105637.pdf. Accessed 13 February 2014
  29. 29.
    Vermorken JB (2012) Cilengitide with cetuximab, cisplatin, and 5-FU in recurrent and/or metastatic squamous cell cancer of the head and neck: the ADVANTAGE phase II trial. Abstract No. 5516; 2012 ASCO Annual MeetingGoogle Scholar
  30. 30.
    Mikkelsen T, Brodie C, Finniss S et al (2008) Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer 124:2719–2727CrossRefGoogle Scholar
  31. 31.
    Kim Y-H, Lee JK, Kim B et al (2013) Combination therapy of cilengitide with belotecan against experimental glioblastoma. Int J Cancer 133:749–756Google Scholar
  32. 32.
    Burke PA, DeNardo SJ, Miers LA et al (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272PubMedGoogle Scholar
  33. 33.
    Azmi AS, Wang Z, Philip PA et al (2011) Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin Emerg Drugs 16:59–70PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Choi B-H, Yoon HS (2011) FKBP38-Bcl-2 interaction: a novel link to chemoresistance. Curr Opin Pharmacol 11:354–359PubMedCrossRefGoogle Scholar
  35. 35.
    Yamada S, Bu X-Y, Khankaldyyan V et al (2006) Effect of the angiogenesis inhibitor cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery 59:1304–1312PubMedCrossRefGoogle Scholar
  36. 36.
    Albert JM, Cao C, Geng L et al (2006) Integrin αvb3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65:1536–1543PubMedCrossRefGoogle Scholar
  37. 37.
    Lomonaco SL, Finniss S, Xiang C et al (2011) Cilengitide induces autophagy-mediated cell death in glioma cells. Neuro Oncol 13:857–865PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • G. Heiduschka
    • 1
    • 2
  • C. Lill
    • 1
  • S. Schneider
    • 1
  • R. Seemann
    • 3
  • G. Kornek
    • 4
  • R. Schmid
    • 5
  • U. Kotowski
    • 1
  • D. Thurnher
    • 1
  1. 1.Department of Otorhinolaryngology, Head and Neck Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
  2. 2.Clinical PharmacologyMedical University of ViennaViennaAustria
  3. 3.Craniomaxillofacial and Oral SurgeryMedical University of ViennaViennaAustria
  4. 4.Internal MedicineMedical University of ViennaViennaAustria
  5. 5.Radiotherapy and RadiobiologyMedical University of ViennaViennaAustria

Personalised recommendations