Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation

  • M. SchmidtEmail author
  • J. Haagen
  • R. Noack
  • A. Siegemund
  • P. Gabriel
  • W. Dörr
Original article


Background and purpose

Oral mucositis is a severe and dose limiting early side effect of radiotherapy for head-and-neck tumors. This study was initiated to determine the effect of bone marrow- and mesenchymal stem cell transplantation on oral mucositis (mouse tongue model) induced by fractionated irradiation.

Material and methods

Daily fractionated irradiation (5 × 3 Gy/week) was given over 1 (days 0–4) or 3 weeks (days 0–4, 7–11, 14–18). Each protocol was terminated (day 7 or 21) by graded test doses (5 dose groups, 10 animals each) in order to generate complete dose–effect curves. The incidence of mucosal ulceration, corresponding to confluent mucositis grade 3 (RTOG/EORTC), was analyzed as the primary, clinically relevant endpoint. Bone marrow or mesenchymal stem cells were transplanted intravenously at various time points within these fractionation protocols.


Transplantation of 6 × 106, but not of 3 × 106 bone marrow stem cells on day − 1, + 4, + 8, + 11 or + 15 significantly increased the ED50 values (dose, at which an ulcer is expected in 50 % of the mice); transplantation on day + 2, in contrast, was ineffective. Mesenchymal stem cell transplantation on day − 1, 2 or + 8 significantly, and on day + 4 marginally increased the ED50 values.


Transplantation of bone marrow or mesenchymal stem cells has the potential to modulate radiation-induced oral mucositis during fractionated radiotherapy. The effect is dependent on the timing of the transplantation. The mechanisms require further investigation.


Oral mucositis Fractionated radiotherapy Bone marrow transplantation Mesenchymal stem cells Mouse tongue model 

Einfluss von Knochenmarks- oder mesenchymaler Stammzelltransplantation auf die orale Mukositis (Maus) bei fraktionierter Bestrahlung


Hintergrund und Ziel

Die orale Mukositis ist eine schwere und dosislimitierende frühe Nebenwirkung der Strahlentherapie von Kopf-Hals-Tumoren. Ziel der vorliegenden Arbeit war die Untersuchung des Effekts der Transplantation von Knochenmarks- oder mesenchymalen Stammzellen auf die durch fraktionierte Bestrahlung induzierte orale Mukositis im Modell der Mäusezunge.

Material und Methoden

Die tägliche fraktionierte Bestrahlung (5-mal 3 Gy/Woche) wurde über eine (Tage 0–4) oder über 3 Wochen (Tage 0–4, 7–11, 14–18) appliziert. Abschließend erfolgte die lokale Bestrahlung (Tag 7 oder 21) in gestaffelten Testdosen (5 Dosisgruppen mit je 10 Tieren) zur Generierung kompletter Dosis-Effekt-Kurven. Die Inzidenz von Schleimhautulzera, entsprechend einer konfluenten Grad-3-Mukositis (RTOG/EORTC), wurde als primärer, klinisch relevanter Endpunkt analysiert. Knochenmark oder mesenchymale Stammzellen wurden zu verschiedenen Zeitpunkten während dieser Fraktionierungsprotokolle intravenös transplantiert.


Die Transplantation von 6 × 106, nicht jedoch von 3 × 106 Knochenmarkszellen, an den Tagen − 1, + 4, + 8, + 11 oder + 15 der fraktionierten Bestrahlung erhöhte die ED50-Werte (Dosis, bei der bei 50 % der Tiere ein Schleimhautulkus zu erwarten ist) signifikant; im Gegensatz dazu war die Transplantation an Tag + 2 wirkungslos. Die mesenchymale Stammzelltransplantation führte an den Tagen − 1, + 4 oder + 8 zu einer signifikanten und an Tag +4 zu einer marginalen Erhöhung der ED50-Werte.


Die Transplantation von Knochenmark bzw. mesenchymalen Stammzellen hat das Potential, die durch Strahlentherapie induzierte orale Mukositis zu beeinflussen. Dieser Effekt ist abhängig vom Zeitpunkt der Transplantation. Die Mechanismen bedürfen einer weiteren Abklärung.


Orale Mukositis Fraktionierte Strahlentherapie Knochenmarkstransplantation Mesenchymale Stammzellen Mäuse Zungenmodell 



This project was supported by the European Commission; contract number LSHC-CT-2004-503436 (“FIRST”). The authors are grateful to Ms. D. Pfitzmann and the medical physicists of the Dept. of Radiotherapy and Radiation Oncology at the Medical Faculty Carl Gustav Carus of the Technical University Dresden for skillful assistance.

Compliance with ethical guidelines

Conflict of interest. M. Schmidt, J. Haagen, R. Noack, A. Siegemund, P. Gabriel, and W. Dörr state that there are no conflicts of interest. All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities.


  1. 1.
    Albert M, Schmidt M, Cordes N, Dörr W (2012) Modulation of radiation-induced oral mucositis (mouse) by selective inhibition of beta1 integrin. Radiother Oncol 104:230–234PubMedCrossRefGoogle Scholar
  2. 2.
    Bensidhoum M, Gobin S, Chapel A et al (2005) Therapeutic effect of human mesenchymal stem cells in skin after radiation damage. J Soc Biol 199:337–431PubMedCrossRefGoogle Scholar
  3. 3.
    Bese NS, Hendry J, Jeremic B (2007) Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int J Radiat Oncol Biol Phys 68:654–661PubMedCrossRefGoogle Scholar
  4. 4.
    Bütof R, Baumann M (2013) Time in radiation oncology—keep it short! Radiother Oncol 106:271–275PubMedCrossRefGoogle Scholar
  5. 5.
    Camargo FD, Chambers SM, Goodell MA (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 37:55–65PubMedCrossRefGoogle Scholar
  6. 6.
    Chhabra P, Brayman KL (2013) Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2:328–336PubMedCrossRefGoogle Scholar
  7. 7.
    Clements WK, Traver D (2013) Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol 13:336–348PubMedCrossRefGoogle Scholar
  8. 8.
    Cvek J, Kubes J, Skacelikova E et al (2012) Hyperfractionated accelerated radiotherapy with concomitant integrated boost of 70–75 Gy in 5 weeks for advanced head and neck cancer. A phase I dose escalation study. Strahlenther Onkol 188:666–670PubMedCrossRefGoogle Scholar
  9. 9.
    Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884PubMedCrossRefGoogle Scholar
  10. 10.
    Dörr W (2003) Modulation of repopulation processes in oral mucosa: experimental results. Int J Radiat Biol 79:531–537PubMedCrossRefGoogle Scholar
  11. 11.
    Dörr W (2009) Pathogenesis of normal-tissue side-effects. In: Joiner M, Van der Kogel A (eds) Basic clinical radiobiology, 4th edn. Hodder Arnold, London pp 169–190Google Scholar
  12. 12.
    Dörr W (2009) Biological response modifiers: normal tissues. In: Joiner M, Van der Kogel A (eds) Basic clinical radiobiology, 4th edn. Hodder Arnold, London pp 301–315Google Scholar
  13. 13.
    Dörr W, Kummermehr J (1990) Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses. Radiother Oncol 17:249–259PubMedCrossRefGoogle Scholar
  14. 14.
    Dörr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61:223–231PubMedCrossRefGoogle Scholar
  15. 15.
    Dörr W, Herskind C (2012) Radiation biology of normal tissues. Scientific progress and perspectives. Strahlenther Onkol 188(Suppl 3):295–298PubMedCrossRefGoogle Scholar
  16. 16.
    Dörr W, Heider K, Spekl K (2005) Reduction of oral mucositis by palifermin (rHuKGF): dose-effect of rHuKGF. Int J Radiat Biol 81:557–565PubMedCrossRefGoogle Scholar
  17. 17.
    Dörr W, Reichel S, Spekl K (2005) Effects of keratinocyte growth factor (palifermin) administration protocols on oral mucositis (mouse) induced by fractionated irradiation. Radiother Oncol 75:99–105PubMedCrossRefGoogle Scholar
  18. 18.
    Dörr W, Dolling-Jochem I, Baumann M, Herrmann T (1997) The therapeutic management of radiogenic oral mucositis. Strahlenther Onkol 173:183–192PubMedCrossRefGoogle Scholar
  19. 19.
    Elting LS, Cooksley CD, Chambers MS, Garden AS (2007) Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies. Int J Radiat Oncol Biol Phys 68:1110–1120PubMedCrossRefGoogle Scholar
  20. 20.
    Elting LS, Keefe DM, Sonis ST et al (2008) Patient-reported measurements of oral mucositis in head and neck cancer patients treated with radiotherapy with or without chemotherapy: demonstration of increased frequency, severity, resistance to palliation, and impact on quality of life. Cancer 113:2704–2713PubMedCrossRefGoogle Scholar
  21. 21.
    Francois S, Mouiseddine M, Mathieu N et al (2007) Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol 86:1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Frenette PS, Pinho S, Lucas D, Scheiermann C (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316PubMedCrossRefGoogle Scholar
  23. 23.
    Gehrisch A, Dörr W (2007) Effects of systemic or topical administration of sodium selenite on early radiation effects in mouse oral mucosa. Strahlenther Onkol 183:36–42PubMedCrossRefGoogle Scholar
  24. 24.
    Gogolek J, Schuemer R, Ströhlein G (eds) (1992) Datenverarbeitung und statistische Auswertung mit SAS. Einführumg in das Programmsystem, Datenmanagement und Auswertung, vol 1. Fischer, StuttgartGoogle Scholar
  25. 25.
    Haagen J, Krohn H, Röllig S et al (2009) Effect of selective inhibitors of inflammation on oral mucositis: preclinical studies. Radiother Oncol 92:472–476PubMedCrossRefGoogle Scholar
  26. 26.
    Hansson EM, Lendahl U (2013) Regenerative medicine for the treatment of heart disease. J Intern Med 273:235–245PubMedCrossRefGoogle Scholar
  27. 27.
    Harris DJ (2006) Cancer treatment-induced mucositis pain: strategies for assessment and management. Ther Clin Risk Manag 2:251–258PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Herrmann T, Baumann M (2005) Prolongation of latency or overall treatment time by unplanned radiation pauses. The clinical importance of compensation. Strahlenther Onkol 181:65–76PubMedCrossRefGoogle Scholar
  29. 29.
    Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85:3–10PubMedCrossRefGoogle Scholar
  30. 30.
    Kotton DN, Ma BY, Cardoso WV et al (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188PubMedGoogle Scholar
  31. 31.
    Lalla RV, Sonis ST, Peterson DE (2008) Management of oral mucositis in patients who have cancer. Dent Clin North Am 52:61–77, viiiPubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Maxson S, Lopez EA, Yoo D et al (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1:142–149PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Murphy BA (2007) Clinical and economic consequences of mucositis induced by chemotherapy and/or radiation therapy. J Support Oncol 5:13–21PubMedGoogle Scholar
  34. 34.
    Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  35. 35.
    Pabst S, Spekl K, Dörr W (2004) Changes in the effect of dose fractionation during daily fractionated irradiation: studies in mouse oral mucosa. Int J Radiat Oncol Biol Phys 58:485–492PubMedCrossRefGoogle Scholar
  36. 36.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  37. 37.
    Poulsom R, Forbes SJ, Hodivala-Dilke K et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenthal DI (2007) Consequences of mucositis-induced treatment breaks and dose reductions on head and neck cancer treatment outcomes. J Support Oncol 5:23–31PubMedGoogle Scholar
  39. 39.
    Rosenthal DI, Trotti A (2009) Strategies for managing radiation-induced mucositis in head and neck cancer. Semin Radiat Oncol 19:29–34PubMedCrossRefGoogle Scholar
  40. 40.
    Russo G, Haddad R, Posner M, Machtay M (2008) Radiation treatment breaks and ulcerative mucositis in head and neck cancer. Oncologist 13:886–898PubMedCrossRefGoogle Scholar
  41. 41.
    SAS Institute C, N.C.:, USA. SAS/STAT 9.2 User Guide. 2008Google Scholar
  42. 42.
    Schuemer R, Ströhlein G, Gogolek J (1990) Datenverarbeitung und statistische Auswertung mit SAS. Komplexe statistische Analyseverfahren, vol 2. Fischer, StuttgartGoogle Scholar
  43. 43.
    Sumita Y, Liu Y, Khalili S et al (2011) Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol 43:80–87PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Treister N, Sonis S (2007) Mucositis: biology and management. Curr Opin Otolaryngol Head Neck Surg 15:123–129PubMedCrossRefGoogle Scholar
  45. 45.
    Vieyra DS, Jackson KA, Goodell MA (2005) Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev 1:65–69PubMedCrossRefGoogle Scholar
  46. 46.
    Woolthuis CM, Haan G de, Huls G (2011) Aging of hematopoietic stem cells: Intrinsic changes or micro-environmental effects? Curr Opin Immunol 23:512–517PubMedCrossRefGoogle Scholar
  47. 47.
    Wygoda A, Rutkowski T, Hutnik M et al (2013) Acute mucosal reactions in patients with head and neck cancer: three patterns of mucositis observed during radiotherapy. Strahlenther Onkol 189:547–551PubMedCrossRefGoogle Scholar
  48. 48.
    Xu YL, Liu YL, Wang Q et al (2012) Intravenous transplantation of mesenchymal stem cells attenuates oleic acid induced acute lung injury in rats. Chin Med J (Engl) 125:2012–2018Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Schmidt
    • 1
    • 2
    • 3
    Email author
  • J. Haagen
    • 1
  • R. Noack
    • 1
  • A. Siegemund
    • 1
  • P. Gabriel
    • 1
  • W. Dörr
    • 1
    • 4
  1. 1.Department of Radiotherapy and Radiation Oncology, OncoRay – National Center for Radiation Research in OncologyMedical Faculty and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  2. 2.German Cancer Consortium (DKTK)DresdenGermany
  3. 3.German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Dept. of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation OncologyComprehensive Cancer Center, Medical University/AKH ViennaViennaAustria

Personalised recommendations