Strahlentherapie und Onkologie

, Volume 190, Issue 2, pp 204–209 | Cite as

Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

  • C.G. VosEmail author
  • M. Dahele
  • J.R. van Sörnsen de Koste
  • S. Senan
  • I. Bahce
  • M.A. Paul
  • E. Thunnissen
  • E.F. Smit
  • K.J. Hartemink
Original article



Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment.


In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing.


CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R2 = 0.99, P < 0.01).


Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment.


Non-small-cell lung cancer Induction therapy Survival Chemoradiotherapy Tumor volume 

Halbautomatische Auswertung der Tumorvolumenabnahme als Imaging-Biomarker von apikalen Sulkustumoren



Die empfohlene Behandlung von apikalen Sulkustumoren ist die Radiochemotherapie, gefolgt von Chirurgie. Patienten mit einer histopathologisch vollständigen Remission in dem resezierten Präparat haben eine bessere Prognose. Diese retrospektive Studie untersucht zum einen, ob die Volumenabnahme auf die Induktion der Radiochemotherapie eine vollständige histopathologische Remission („pathological complete response“, pCR) oder das 2-Jahres-Gesamtüberleben vorhersagen kann, und zum anderen die Effektivität der halbautomatischen, auf „deformable image registration“ (DIR) basierenden Segmentierung für die sequentielle Volumenmessung.


In dieser retrospektiven Studie wurden die Behandlungsergebnisse einer Datenbank der Abteilung entnommen. Das Tumorvolumen wurde abgegrenzt auf der Computertomographie-(CT)-gestützten Bestrahlungsplanung, die typischerweise während des ersten Zyklus der Chemotherapie durchgeführt wird. Die Tumorkonturen wurden auf die Post-Induktions-CT mittels DIR mit und ohne manuelle Nachbearbeitung übertragen.


Es wurden CT-Aufnahmen von 30 geeigneten Patienten analysiert. Das mediane Follow-up betrug 51 Monate. Weder die absolute, noch die relative Tumorvolumenreduktion korrelierten mit der pCR oder der 2-Jahres-Überlebensrate. Post-Induktions-Tumorvolumen von DIR allein und DIR mit manueller Nachbearbeitung korrelierten stark (R2 = 0,99; p < 0,01).


Die Volumenabnahme infolge einer Induktions-Radiochemotherapie konnte weder die pCR noch das Überleben bei Patienten mit apikalen Sulkustumoren, die mit trimodaler Therapie behandelt wurden, vorhersagen. Die DIR-Segmentierung als ein Instrument zur Messung der longitudinalen Volumenänderung bedarf der weiteren Erprobung.


Nichtkleinzelliges Bronchialkarzinom Induktionstherapie Überleben Chemoradiotherapie Tumorvolumen 



Dr. E.S.M. de Lange-Klerk’s support with the statistical analysis is greatly appreciated. Furthermore, we thank Dr. Lothar Schwarte for his help with the German translation of the abstract.

Compliance with ethical guidelines

Conflict of interest. C.G. Vos, J.R. van Sörnsen de Koste, S. Senan, I. Bahce, M.A. Paul, E. Thunnissen, E.F. Smit and K.J. Hartemink have made no statement. M. Dahele received travel expenses +/− honoraria from Varian Medical Systems Inc. and Brainlab AG. The Department of Radiation Oncology, VU University Medical Center has research collaborations with Varian Medical Systems Inc., USA and Velocity Medical Solutions, USA.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.


  1. 1.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247PubMedCrossRefGoogle Scholar
  2. 2.
    Mozley PD, Schwartz LH, Bendtsen C et al (2010) Change in lung tumor volume as a biomarker of treatment response: a critical review of the evidence. Ann Oncol 21:1751–1755PubMedCrossRefGoogle Scholar
  3. 3.
    Kozak MM, Murphy JD, Schipper ML et al (2011) Tumor volume as a potential imaging-based risk-stratification factor in trimodality therapy for locally advanced non-small cell lung cancer. J Thorac Oncol 6:920–926PubMedCrossRefGoogle Scholar
  4. 4.
    Bral S, De Ridder M, Duchateau M et al (2011) Daily megavoltage computed tomography in lung cancer radiotherapy: correlation between volumetric changes and local outcome. Int J Radiat Oncol Biol Phys 80:1338–1342PubMedCrossRefGoogle Scholar
  5. 5.
    Alberts WM, American College of Chest Physicians (2007) Diagnosis and management of lung cancer executive summary: ACCP evidence-based clinical practice guidelines (2nd Edition). Chest 132:1S–19SPubMedCrossRefGoogle Scholar
  6. 6.
    Rusch VW, Giroux DJ, Kraut MJ et al (2007) Induction chemoradiation and surgical resection for superior sulcus non-small-cell lung carcinomas: long-term results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J Clin Oncol 25:313–318PubMedCrossRefGoogle Scholar
  7. 7.
    Kunitoh H, Kato H, Tsuboi M et al (2008) Phase II trial of preoperative chemoradiotherapy followed by surgical resection in patients with superior sulcus non-small-cell lung cancers: report of Japan Clinical Oncology Group trial 9806. J Clin Oncol 26:644–649PubMedCrossRefGoogle Scholar
  8. 8.
    Vos CG, Hartemink KJ, Blaauwgeers JL et al (2013) Trimodality therapy for superior sulcus tumours: evolution and evaluation of a treatment protocol. Eur J Surg Oncol 39:197–203PubMedCrossRefGoogle Scholar
  9. 9.
    Van de Steene J, Linthout N, Mey J de et al (2002) Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother Oncol 62:37–49CrossRefGoogle Scholar
  10. 10.
    Dam IE van, Sörnsen de Koste JR van, Hanna GG et al (2010) Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool. Radiother Oncol 96:67–72PubMedCrossRefGoogle Scholar
  11. 11.
    Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187:357–366PubMedCrossRefGoogle Scholar
  12. 12.
    Shen KR, Meyers BF, Larner JM et al (2007) Special treatment issues in lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:290S–305SPubMedCrossRefGoogle Scholar
  13. 13.
    Phernambucq EC, Spoelstra FO, Paul MA et al (2009) Evaluation of a treatment strategy for optimising preoperative chemoradiotherapy in stage III non-small-cell lung cancer. Eur J Cardiothorac Surg 36:1052–1057PubMedCrossRefGoogle Scholar
  14. 14.
    Zou KH, Warfield SK, Bharatha A et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11:178–189PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yeo SG, Kim DY, Park JW et al (2012) Tumor volume reduction rate after preoperative chemoradiotherapy as a prognostic factor in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 82:e193–e199PubMedCrossRefGoogle Scholar
  16. 16.
    Yang SN, Liao CY, Chen SW et al (2011) Clinical implications of the tumor volume reduction rate in head-and-neck cancer during definitive intensity-modulated radiotherapy for organ preservation. Int J Radiat Oncol Biol Phys 79:1096–1103PubMedCrossRefGoogle Scholar
  17. 17.
    Akazawa K, Tamaki Y, Taguchi T et al (2008) Potential of reduction in total tumor volume measured with 3D-MRI as a prognostic factor for locally-advanced breast cancer patients treated with primary chemotherapy. Breast J 14:523–531PubMedCrossRefGoogle Scholar
  18. 18.
    D’Amico AV, Halabi S, Tempany C et al (2008) Tumor volume changes on 1.5 Tesla endorectal MRI during neoadjuvant androgen suppression therapy for higher-risk prostate cancer and recurrence in men treated using radiation therapy results of the phase II CALGB 9682 study. Int J Radiat Oncol Biol Phys 71:9–15CrossRefGoogle Scholar
  19. 19.
    Lee P, Bazan JG, Lavori PW et al (2012) Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer 13:52–58PubMedCrossRefGoogle Scholar
  20. 20.
    Yaghmai V, Miller FH, Rezai P et al (2011) Response to treatment series: part 2, tumor response assessment–using new and conventional criteria. AJR Am J Roentgenol 197:18–27PubMedCrossRefGoogle Scholar
  21. 21.
    Gaede S, Olsthoorn J, Louie AV et al (2011) An evaluation of an automated 4D-CT contour propagation tool to define an internal gross tumour volume for lung cancer radiotherapy. Radiother Oncol 101:322–328PubMedCrossRefGoogle Scholar
  22. 22.
    Speight R, Sykes J, Lindsay R et al (2011) The evaluation of a deformable image registration segmentation technique for semi-automating internal target volume (ITV) production from 4DCT images of lung stereotactic body radiotherapy (SBRT) patients. Radiother Oncol 98:277–283PubMedCrossRefGoogle Scholar
  23. 23.
    Simmat I, Georg P, Georg D et al (2012) Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions. Strahlenther Onkol 188:807–815PubMedCrossRefGoogle Scholar
  24. 24.
    Bundschuh RA, Andratschke N, Dinges J et al (2012) Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188:592–598PubMedCrossRefGoogle Scholar
  25. 25.
    Brock KK, Deformable Registration Accuracy Consortium (2010) Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys 76:583–596PubMedCrossRefGoogle Scholar
  26. 26.
    Jones B, Dale RG, Deehan C et al (2001) The role of biologically effective dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol) 13:71–81Google Scholar

Copyright information

© Springer Heidelberg Berlin 2013

Authors and Affiliations

  • C.G. Vos
    • 1
    Email author
  • M. Dahele
    • 2
  • J.R. van Sörnsen de Koste
    • 2
  • S. Senan
    • 2
  • I. Bahce
    • 3
  • M.A. Paul
    • 1
  • E. Thunnissen
    • 4
  • E.F. Smit
    • 3
  • K.J. Hartemink
    • 1
    • 5
  1. 1.Departments of SurgeryVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Departments of Radiation OncologyVU University Medical CenterAmsterdamThe Netherlands
  3. 3.Departments of Pulmonary DiseasesVU University Medical CenterAmsterdamThe Netherlands
  4. 4.Departments of PathologyVU University Medical CenterAmsterdamThe Netherlands
  5. 5.Department of SurgeryNetherlands Cancer Institute – Antoni van Leeuwenhoek Hospital (NKI-AVL)AmsterdamThe Netherlands

Personalised recommendations