Strahlentherapie und Onkologie

, Volume 190, Issue 2, pp 199–203 | Cite as

Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

  • L.H. Dröge
  • T. Hinsche
  • M. Canis
  • B. Alt-Epping
  • C.F. Hess
  • H.A. WolffEmail author
Original article


Background and purpose

Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity.

Patients and methods

A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed.


Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months.


The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting.


Retrospective study Palliative treatment Quality of life Outcome Toxicity 

Fraktionierte externe Radiotherapie bei Schädelbasismetastasen mit Hirnnervenausfällen


Hintergrund und Ziele

Schädelbasismetastasen treten häufig im Spätstadium vieler Tumorentitäten auf und können durch Schmerzen und neurologische Ausfälle die Lebensqualität der Patienten stark beeinträchtigen. In der vorliegenden Studie wurde retrospektiv eine fraktionierte externe Radiotherapie (EBRT) als palliative Behandlungsmöglichkeit bezüglich der Durchführbarkeit, der Akuttoxizität und des neurologischen Outcomes analysiert.

Patienten und Methoden

Es wurden 30 Patienten mit Schädelbasismetastasen und Hirnnervenausfällen mit einer mittleren Dosis von 31,6 Gy bestrahlt. Neurologische Symptome wurden vor, während und nach Radiotherapie erfasst. Sie wurden anhand der klinischen Syndrome nach der Lokalisation (mittlere Schädelgrube, Orbital-, Parasellär-, Foramen-jugulare- und Okzipitalkondylenregion) kategorisiert. Das neurologische Outcome wurde in Persistenz der Symptome, partielles Ansprechen, gutes Ansprechen und Komplettremission eingeteilt.


Vor Therapie wurden 37 klinische Syndrome diagnostiziert; hierbei wiesen 4 Patienten multiple Syndrome auf. Das Gesamtansprechen betrug 81,1 %, im Einzelnen 10,8 % in Komplettremission, 48,6 % mit gutem und 21,6 % mit partiellem Ansprechen. Zwei Patienten zeigten eine Grad-1-Toxizität der Haut und ein Patient eine Grad-1-Hämatotoxizität unter konkomitanter Chemotherapie. Das mediane Gesamtüberleben betrug 3,9 Monate bei einem medianen Follow-up von 45 Monaten.


Die fraktionierte externe Radiotherapie bei Schädelbasismetastasen mit Hirnnervenausfällen zeichnet sich durch gutes neurologisches Ansprechen, exzellente Durchführbarkeit und geringgradige Akuttoxizität aus. Diese Ergebnisse unterstreichen die Stellung von EBRT als Standardtherapie für diese Indikation.


Retrospektivstudie Palliativbehandlung Lebensqualität Toxizität Outcome 


Compliance with ethical guidelines

Conflict of interest.

L.H. Dröge, T. Hinsche, M. Canis, B. Alt-Epping, C.F. Hess and H.A. Wolff state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies. Consent was obtained from all patients identifiable from images or other information within the manuscript. In the case of underage patients, consent was obtained from a parent or legal guardian.


  1. 1.
    Tofe AJ, Francis MD, Harvey WJ (1975) Correlation of neoplasms with incidence and localization of skeletal metastases: an analysis of 1355 diphosphonate bone scans. J Nucl Med 16:986–989PubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  3. 3.
    Wang CY, Wu GY, Shen MJ et al (2013) Comparison of distribution characteristics of metastatic bone lesions between breast and prostate carcinomas. Oncol Lett 5:391–397PubMedCentralPubMedGoogle Scholar
  4. 4.
    Mitsuya K, Nakasu Y, Horiguchi S et al (2011) Metastatic skull tumors: MRI features and a new conventional classification. J Neurooncol 104:239–245PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ransom DT, Dinapoli RP, Richardson RL (1990) Cranial nerve lesions due to base of the skull metastases in prostate carcinoma. Cancer 65:586–589PubMedCrossRefGoogle Scholar
  6. 6.
    Combs SE, Adeberg S, Dittmar JO et al (2013) Skull base meningiomas: long-term results and patient self-reported outcome in 507 patients treated with fractionated stereotactic radiotherapy (FSRT) or intensity modulated radiotherapy (IMRT). Radiother Oncol 106:186–191PubMedCrossRefGoogle Scholar
  7. 7.
    Izumi K, Mizokami A, Narimoto K et al (2010) Cranial nerve deficit caused by skull metastasis of prostate cancer: three Japanese castration-resistant prostate cancer cases. Int J Clin Oncol 15:631–634PubMedCrossRefGoogle Scholar
  8. 8.
    Coulson SE, O’Dwyer NJ, Adams RD, Croxson GR (2004) Expression of emotion and quality of life after facial nerve paralysis. Otol Neurotol 25:1014–1019PubMedCrossRefGoogle Scholar
  9. 9.
    Dennis K, Makhani L, Zeng L et al (2013) Single fraction conventional external beam radiation therapy for bone metastases: a systematic review of randomised controlled trials. Radiother Oncol 106:5–14PubMedCrossRefGoogle Scholar
  10. 10.
    Laigle-Donadey F, Taillibert S, Martin-Duverneuil N et al (2005) Skull-base metastases. J Neurooncol 75:63–69PubMedCrossRefGoogle Scholar
  11. 11.
    Chamoun RB, DeMonte F (2011) Management of skull base metastases. Neurosurg Clin N Am 22:61–66PubMedCrossRefGoogle Scholar
  12. 12.
    Jang JW, Chan AW (2013) Prevention and management of complications after radiotherapy for skull base tumors: a multidisciplinary approach. Adv Otorhinolaryngol 74:163–173PubMedGoogle Scholar
  13. 13.
    Cuneo KC, Zagar TM, Brizel DM et al (2012) Stereotactic radiotherapy for malignancies involving the trigeminal and facial nerves. Technol Cancer Res Treat 11:221–228PubMedCrossRefGoogle Scholar
  14. 14.
    O’Sullivan JM, Norman AR, McNair H, Dearnaley DP (2004) Cranial nerve palsies in metastatic prostate cancer — Results of base of skull radiotherapy. Radiother Oncol 70:87–90CrossRefGoogle Scholar
  15. 15.
    McDermott RS, Anderson PR, Greenberg RE et al (2004) Cranial nerve deficits in patients with metastatic prostate carcinoma: clinical features and treatment outcomes. Cancer 101:1639–1643PubMedCrossRefGoogle Scholar
  16. 16.
    Greenberg HS, Deck MD, Vikram B et al (1981) Metastasis to the base of the skull: clinical findings in 43 patients. Neurology 31:530–537PubMedCrossRefGoogle Scholar
  17. 17.
    Ammirati M, Zarzour HK (2010) Presentation and clinical features of tumors of the skull base and cranial nerves. In: Mehta MP, Chang SM, Vogelbaum MA, Guha A (eds) Principles and practice of neuro-oncology. A multidisciplinary approach, first edn. Transatlantic, London, p 288Google Scholar
  18. 18.
    Capobianco DJ, Brazis PW, Rubino FA, Dalton JN (2002) Occipital condyle syndrome. Headache 42:142–146PubMedCrossRefGoogle Scholar
  19. 19.
    Trotti A, Byhardt R, Stetz J et al (2000) Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 47:13–47PubMedCrossRefGoogle Scholar
  20. 20.
    Trotti A, Colevas AD, Setser A et al (2003) CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13:176–181PubMedCrossRefGoogle Scholar
  21. 21.
    Adamietz IA (2013) Quality of life after surgery or radiosurgery of brain metastases and adjuvant whole brain radiotherapy. Short- and long-term prognosis differentiate the treatment strategy in brain metastases. Strahlenther Onkol 189:433–435PubMedCrossRefGoogle Scholar
  22. 22.
    Pan J, Liu AL, Wang ZC (2013) Gamma knife radiosurgery for skull base malignancies. Clin Neurol Neurosurg 115:44–48PubMedCrossRefGoogle Scholar
  23. 23.
    Coppa ND, Raper DM, Zhang Y et al (2009) Treatment of malignant tumors of the skull base with multi-session radiosurgery. J Hematol Oncol 2:16PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Schmid HP, McNeal JE, Stamey TA (1993) Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 71:2031–2040PubMedCrossRefGoogle Scholar
  25. 25.
    Arai T, Kuroishi T, Saito Y et al (1994) Tumor doubling time and prognosis in lung cancer patients: evaluation from chest films and clinical follow-up study. Japanese Lung Cancer Screening Research Group. Jpn J Clin Oncol 24:199–204PubMedGoogle Scholar
  26. 26.
    Rades D, Douglas S, Huttenlocher S et al (2011) Validation of a score predicting post-treatment ambulatory status after radiotherapy for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys 79:1503–1506PubMedCrossRefGoogle Scholar
  27. 27.
    Dziggel L, Segedin B, Podvrsnik NH et al (2013) Validation of a survival score for patients treated with whole-brain radiotherapy for brain metastases. Strahlenther Onkol 189:364–366PubMedCrossRefGoogle Scholar
  28. 28.
    Larsen GY, Goldstein B (1999) Consultation with the specialist: increased intracranial pressure. Pediatr Rev 20:234–239PubMedCrossRefGoogle Scholar
  29. 29.
    Gani C, Müller AC, Eckert F et al (2012) Outcome after whole brain radiotherapy alone in intracranial leptomeningeal carcinomatosis from solid tumors. Strahlenther Onkol 188:148–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer Heidelberg Berlin 2013

Authors and Affiliations

  • L.H. Dröge
    • 1
  • T. Hinsche
    • 1
  • M. Canis
    • 2
  • B. Alt-Epping
    • 3
  • C.F. Hess
    • 1
  • H.A. Wolff
    • 1
    Email author
  1. 1.Department of Radiotherapy and Radiation OncologyUniversity Hospital of GöttingenGöttingenGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity of GöttingenGöttingenGermany
  3. 3.Department of Palliative MedicineUniversity of GöttingenGöttingenGermany

Personalised recommendations