Strahlentherapie und Onkologie

, Volume 189, Issue 10, pp 881–886 | Cite as

PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs

  • M. RodriguezEmail author
  • J. Sempau
  • L. Brualla
Original article



The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used.


PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard.


A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86 × 3.00 × 1.86 mm3 voxels with an average 2 % standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h—excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once.


PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from


Dose distribution Phantoms, imaging Computerized tomography, x-ray Planning target volume Organs at risk 

PRIMO: Eine graphische Benutzeroberfläche für Monte-Carlo-Simulationen von Varian- und Elekta-Linearbeschleunigern



Eine korrekte Monte-Carlo-Simulation eines Linearbeschleunigers erfordert die detaillierte Beschreibung von dessen Geometrie und die Anwendung optimierter varianzreduzierender Techniken zur Simulation des Strahlungstransports. Beide Aufgaben sind mit erheblichem Programmieraufwand verbunden und setzen genaue Kenntnisse von Kodierungdetails des verwendeten Monte-Carlo-Programms voraus.


PRIMO, die hier erstmalig vorgestellte Monte-Carlo-Benutzeroberfläche erlaubt mit wenig Aufwand die Simulation der meisten Linearbeschleuniger der Firmen Varian und Elekta, einschließlich ihrer Lamellenkollimatoren und Elektronentubusse. PRIMO kombiniert (1) die exakte Physik des PENELOPE-Kodes, (2) ausgesuchte und für diese spezielle Anwendung entwickelte varianzreduzierende Techniken, die erheblich die Rechenzeit verkürzen und (3) eine nutzerfreundliche graphische Benutzeroberfläche mit einfach zu bedienenden Werkzeugen zur Analyse der Simulationsergebnisse. PRIMO berechnet Dosisverteilungen in Phantomen ebenso wie in Computertomographien von Patienten, handhabt Phasenraumdateien („phase-space files“) im IAEA-Format und importiert Strukturen (wie Zielvolumina und Risikoorgane) im DICOM-RT-STRUCT-Standard.


Die Benutzeroberfläche wird am Beispiel einer Prostatabestrahlung mit dem feinzeichnenden Millenium-Lamellenkollimator (MLC 120HD) an einem Varian Clinac 2100 C/D vorgestellt. Die Berechnung der Dosisverteilung bei einer Voxelgröße von 1,86 × 3,00 × 1,86 mm3 mit einer durchschnittlichen statistischen Unsicherheit von 2 % benötigt mit einem 8-Kern-Intel-Xeon 2,67 GHz Prozessor 1,8 h. Darin ist die Simulation des nichtpatientenspezifischen Teils des Linearbeschleunigers allerdings nicht eingeschlossen, wofür einmalig 3,8 h benötigt werden.


PRIMO ist eine in sich abgeschlossene, eigenständige, nutzerfreundliche Bedienungsoberfläche, die eine einfache Durchführung exakter Monte-Carlo-Simulationen der Dosisverteilungen der meisten gängigen medizinischen Linearbeschleuniger erlaubt. Damit wird erstmalig die Möglichkeit eröffnet, im klinischen Alltag Monte-Carlo-Simulationen zu Forschungszwecken und zur Qualitätskontrolle einzusetzen. Die Software steht zum gebührenfreien Download auf


Dosisverteilung Phantom, Bildgebung X-Ray Computertomographie Planungszielvolumen Risikoorgane 



The authors gratefully acknowledge Varian Medical Systems International AG (Zug, Switzerland) and Elekta Limited (Crawley, United Kingdom) for authorizing the distribution of the encoded geometry files related to their linac models. The authors are grateful to Prof. Dr. med. Wolfgang Sauerwein (Universitätsklinikum Essen) for his continued support and efforts that have helped in making the distribution of PRIMO feasible. JS thanks the Spanish Ministerio de Economía y Competitividad (project no. FIS2012-38480). LB acknowledges financial support from the Deutsche Forschungsgemeinschaft project BR 4043/1-1.

Compliance with ethical guideliines

Conflict of interest. M. Rodriguez, J. Sempau, and L. Brualla state that there is no conflict of interest.

The accompanying manuscript does not include studies on humans or animals.


  1. 1.
    Baró J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B 100:31–46CrossRefGoogle Scholar
  2. 2.
    Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRefGoogle Scholar
  3. 3.
    Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRefGoogle Scholar
  4. 4.
    Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRefGoogle Scholar
  5. 5.
    Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Rad Phys Chem 79:929–932CrossRefGoogle Scholar
  6. 6.
    Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedCrossRefGoogle Scholar
  7. 7.
    Capote R, Jeraj R, Ma CM et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. Vienna, Austria: International Atomic Energy Agency, Nuclear Data SectionGoogle Scholar
  8. 8.
    Chetty I, Curran B, Cygler J, DeMarco J (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853PubMedCrossRefGoogle Scholar
  9. 9.
    Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L (2007) Monte Carlo based water/medium stopping power ratios for various ICRP and ICRU tissues. Phys Med Biol 52:6475–6483PubMedCrossRefGoogle Scholar
  10. 10.
    Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–457PubMedCrossRefGoogle Scholar
  11. 11.
    Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRefGoogle Scholar
  12. 12.
    Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC—a high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRefGoogle Scholar
  13. 13.
    Reynaert N, Vandermarck S, Schaart D et al (2007) Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem 76:643–686CrossRefGoogle Scholar
  14. 14.
    Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRefGoogle Scholar
  15. 15.
    Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. Issy-les- Moulineaux, France: OECD Nuclear Energy AgencyGoogle Scholar
  16. 16.
    Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 132:377–390CrossRefGoogle Scholar
  17. 17.
    Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRefGoogle Scholar
  18. 18.
    Sempau J, Sánchez-Reyes A, Salvat F et al (2001) Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol 46:1163–1186PubMedCrossRefGoogle Scholar
  19. 19.
    Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRefGoogle Scholar
  20. 20.
    Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRefGoogle Scholar
  21. 21.
    Zee W van der, Hogenbirk A, Marck S van der (2005) ORANGE: a Monte Carlo dose engine for radiotherapy. Phys Med Biol 50:625–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer Heidelberg Berlin 2013

Authors and Affiliations

  1. 1.Institut de Tècniques EnergètiquesUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.NCTeam, StrahlenklinikUniversitätsklinikum EssenEssenGermany

Personalised recommendations