Strahlentherapie und Onkologie

, Volume 189, Issue 9, pp 759–764 | Cite as

Incidence and clinical course of radionecrosis in children with brain tumors

A 20-year longitudinal observational study
  • V. StrengerEmail author
  • H. Lackner
  • R. Mayer
  • P. Sminia
  • P. Sovinz
  • M. Mokry
  • A. Pilhatsch
  • M. Benesch
  • W. Schwinger
  • M. Seidel
  • D. Sperl
  • S. Schmidt
  • C. Urban
Original article


Radionecrosis (RN) in children treated for brain tumors represents a potentially severe long-term complication. Its diagnosis is challenging, since magnetic resonance imaging (MRI) cannot clearly discriminate between RN and tumor recurrence. A retrospective single-center study was undertaken to describe the incidence and clinical course of RN in a cohort of 107 children treated with external radiotherapy (RT) for various brain tumors between 1992 and 2012. During a median follow-up of 4.6 years (range 0.29–20.1 years), RN was implied by suspicious MRI findings in in 5 children (4.7 %), 5–131 months after RT. Suspicion was confirmed histologically (1 patient) or substantiated by FDG positron-emission tomography (FDG-PET, 2 patients) or by FDG-PET and MR spectroscopy (1 patient). Before developing RN, all 5 patients had received cytotoxic chemotherapy in addition to RT. In addition to standard treatment protocols, 2 patients had received further chemotherapy for progression or relapse. Median radiation dose expressed as the biologically equivalent total dose applied in 2 Gy fractions (EQD2) was 51.7 Gy (range 51.0–60.0 Gy). At RN onset, 4 children presented with neurological symptoms. Treatment of RN included resection (n = 1), corticosteroids (n = 2) and a combination of corticosteroids, hyperbaric oxygen (HBO) and bevacizumab (n = 1). One patient with asymptomatic RN was not treated. Complete radiological regression of the lesions was observed in all patients. Clinical symptoms normalized in 3 patients, whereas 2 developed permanent severe neurological deficits. RN represents a severe long-term treatment complication in children with brain tumors. The spectrum of clinical presentation is wide; ranging from asymptomatic lesions to progressive neurological deterioration. FDG-PET and MR spectroscopy may be useful for distinguishing between RN and tumor recurrence. Treatment options in patients with symptomatic RN include conservative management (steroids, HBO, bevacizumab) and surgical resection.


Paediatric oncology Radiotherapy Chemotherapy Late effects Cerebral radionecrosis 

Inzidenz und klinischer Verlauf von Radionekrosen bei Kindern mit Schädeltumoren

Eine 20-Jahres-Langzeit-Beobachtungsstudie


Radionekrosen (RN) bei Kindern nach Behandlung von Schädeltumoren stellen eine schwerwiegende Komplikation mit teilweise lebenslangen Spätfolgen dar. Die Unterscheidung zwischen RN und Tumorrezidiv oder -progression ist mittels Magnetresonanztomographie (MRT) nicht immer eindeutig möglich. In einer retrospektiven Single-Center-Studie beschreiben wir Inzidenz und klinischen Verlauf der RN. Bei 5 (4,7 %) von 107 Kindern, die in den Jahren 1992 bis 2012 wegen unterschiedlicher Schädeltumoren eine Strahlentherapie erhalten hatten, erhärtete sich während des medianen Nachbeobachtungszeitraums von 4,6 (0,29–20,1) Jahren 5–131 Monate nach Bestrahlung der Verdacht auf eine RN. Dieser wurde entweder histologisch (1 Patient) oder mittels FDG-Positronenemissionstomographie (FDG-PET; 2 Patienten) oder mittels MR-Spektroskopie und FDG-PET (1 Patient) bestätigt. Alle 5 Patienten waren vor Auftreten der RN mit einer zytotoxischen Chemotherapie behandelt worden. Wegen Relaps bzw. Progression wurden bei 2 Patienten weitere Chemotherapeutika – zusätzlich zum jeweiligen Standardtherapieprotokoll – verabreicht. Die mediane Strahlendosis, ausgedrückt als Bioequivalenzdosis EQD2, betrug 51,7 Gy (51,0–60,0 Gy). Neurologische Symptome beim Auftreten der RN zeigten 4 Kinder. Die Behandlung bestand aus Resektion (n = 1), Kortikosteroiden (n = 2) oder einer Kombination aus Kortikosteroiden, hyperbarer Oxigenierung und Bevacizumab (n = 1). Ein asymptomatischer Patienten erhielt keine Therapie. Bei allen Patienten kam es zu einer kompletten radiologischen Rückbildung der Läsionen. Bei 3 Patienten reduzierte sich die Symptomatik; 2 Patienten leiden weiterhin an schweren neurologischen Defiziten. RN stellen eine schwerwiegende Langzeitkomplikation bei Kindern nach Behandlung eines Schädeltumors dar. Die Bandbreite der klinischen Symptomatik reicht von asymptomatischen Läsionen bis hin zu fortschreitender neurologischer Symptomatik. FDG-PET und MR-Spektroskopie helfen, RN von Tumorrezidiv oder -progression zu unterscheiden. Die Behandlungsmöglichkeiten bei symptomatischen Patienten umfassen konservatives Management (Kortikosteroide, hyperbare Oxygenierung, Bevacizumab) sowie die chirurgische Resektion.


Pädiatrische Onkologie Strahlentherapie Chemotherapie Spätkomplikation Zerebrale Radionekrose 


Compliance with ethical guidelines

Conflict of interest. V. Strenger, H. Lackner, R. Mayer, P. Sminia, P. Sovinz, M. Mokry, A. Pilhatsch, M. Benesch, W. Schwinger, M. Seidel, D. Sperl, S. Schmidt and C. Urban state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.


  1. 1.
    Ashamalla HL, Thom SR, Goldwein JW (1996) Hyperbaric oxygen therapy for the treatment of radiation-induced sequelae in children. The University of Pennsylvania experience. Cancer 77:2407–2412PubMedCrossRefGoogle Scholar
  2. 2.
    Baack T, Wenz F (2012) Secondary cancers after radiotherapy may appear early and atypical. Strahlenther Onkol 188:91–92 (author reply 2–3)PubMedCrossRefGoogle Scholar
  3. 3.
    Bakardjiev AI, Barnes PD, Goumnerova LC et al (1996) Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer 78:864–873PubMedCrossRefGoogle Scholar
  4. 4.
    Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1997PubMedCrossRefGoogle Scholar
  5. 5.
    Benesch M, Lackner H, Sovinz P et al (2006) Late sequela after treatment of childhood low-grade gliomas: a retrospective analysis of 69 long-term survivors treated between 1983 and 2003. J Neurooncol 78:199–205PubMedCrossRefGoogle Scholar
  6. 6.
    Bolling T, Schuck A, Pape H et al (2007) Register for the evaluation of side effects after radiation in childhood and adolescence—first results. Klin Padiatr 219:139–145PubMedCrossRefGoogle Scholar
  7. 7.
    Brandes AA, Tosoni A, Spagnolli F et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10:361–367PubMedCrossRefGoogle Scholar
  8. 8.
    Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461PubMedCrossRefGoogle Scholar
  9. 9.
    Calaminus G, Bamberg M, Harms D et al (2005) AFP/beta-HCG secreting CNS germ cell tumors: long-term outcome with respect to initial symptoms and primary tumor resection. Results of the cooperative trial MAKEI 89. Neuropediatrics 36:71–77PubMedCrossRefGoogle Scholar
  10. 10.
    Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197PubMedCrossRefGoogle Scholar
  11. 11.
    Chuba PJ, Aronin P, Bhambhani K et al (1997) Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80:2005–2012PubMedCrossRefGoogle Scholar
  12. 12.
    Dietrich U, Wanke I, Mueller T et al (2001) White matter disease in children treated for malignant brain tumors. Childs Nerv Syst 17:731–738PubMedCrossRefGoogle Scholar
  13. 13.
    Fouladi M, Chintagumpala M, Laningham FH et al (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22:4551–4560PubMedCrossRefGoogle Scholar
  14. 14.
    Joiner MC, Bentzen SM (2009) Fractionation: the linear-quadratic approach. In: Joiner MC, Kogel AJ van der (Hrsg) Basic clinical radiobiology. Hodder Arnold, London, S 102–119Google Scholar
  15. 15.
    Kortmann RD, Kuhl J, Timmermann B et al (2001) Current and future strategies in interdisciplinary treatment of medulloblastomas, supratentorial PNET (primitive neuroectodermal tumors) and intracranial germ cell tumors in childhood. Strahlenther Onkol 177:447–461PubMedCrossRefGoogle Scholar
  16. 16.
    Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384PubMedGoogle Scholar
  17. 17.
    Langsenlehner T, Renner W, Gerger A et al (2011) Impact of VEGF gene polymorphisms and haplotypes on radiation-induced late toxicity in prostate cancer patients. Strahlenther Onkol 187:784–791PubMedCrossRefGoogle Scholar
  18. 18.
    Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495PubMedCrossRefGoogle Scholar
  19. 19.
    Mayer R, Hamilton-Farrell MR, Kleij AJ van der et al (2005) Hyperbaric oxygen and radiotherapy. Strahlenther Onkol 181:113–123PubMedCrossRefGoogle Scholar
  20. 20.
    Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360PubMedCrossRefGoogle Scholar
  21. 21.
    Muscal JA, Jones JY, Paulino AC et al (2009) Changes mimicking new leptomeningeal disease after intensity-modulated radiotherapy for medulloblastoma. Int J Radiat Oncol Biol Phys 73:214–221PubMedCrossRefGoogle Scholar
  22. 22.
    Packer RJ, Meadows AT, Rorke LB et al (1987) Long-term sequelae of cancer treatment on the central nervous system in childhood. Med Pediatr Oncol 15:241–253PubMedCrossRefGoogle Scholar
  23. 23.
    Rabin BM, Meyer JR, Berlin JW et al (1996) Radiation-induced changes in the central nervous system and head and neck. Radiographics 16:1055–1072PubMedGoogle Scholar
  24. 24.
    Ruben JD, Dally M, Bailey M (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508PubMedCrossRefGoogle Scholar
  25. 25.
    Shrieve DC (2011) Radiation dose, fractionation and normal tissue injury. In: Shrieve DC, Loeffler JS (Hrsg) Human radiation injury. Lippincott Williams & Wilkins, Philadelphia, S 32–42Google Scholar
  26. 26.
    Sminia P, Mayer R (2012) External beam radiotherapy of recurrent glioma: radiation tolerance of the human brain. Cancers 4:379–399CrossRefGoogle Scholar
  27. 27.
    Strenger V, Sovinz P, Lackner H et al (2008) Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlenther Onkol 184:276–280PubMedCrossRefGoogle Scholar
  28. 28.
    Timmermann B, Kortmann RD, Kuhl J et al (2002) Role of radiotherapy in the treatment of supratentorial primitive neuroectodermal tumors in childhood: results of the prospective German brain tumor trials HIT 88/89 and 91. J Clin Oncol 20:842–849PubMedCrossRefGoogle Scholar

Copyright information

© Springer Heidelberg Berlin 2013

Authors and Affiliations

  • V. Strenger
    • 1
    Email author
  • H. Lackner
    • 1
  • R. Mayer
    • 2
  • P. Sminia
    • 3
  • P. Sovinz
    • 1
  • M. Mokry
    • 4
  • A. Pilhatsch
    • 5
  • M. Benesch
    • 1
  • W. Schwinger
    • 1
  • M. Seidel
    • 1
  • D. Sperl
    • 1
  • S. Schmidt
    • 1
  • C. Urban
    • 1
  1. 1.Division of Pediatric Hematology/OncologyMedical University of GrazGrazAustria
  2. 2.Department of RadiotherapyEBG MedAustron GmbHWiener NeustadtAustria
  3. 3.Department of Radiation OncologyVU University Medical CenterAmsterdamNetherlands
  4. 4.Department of NeurosurgeryMedical University of GrazGrazAustria
  5. 5.Division of Pediatric RadiologyMedical University of GrazGrazAustria

Personalised recommendations