Strahlentherapie und Onkologie

, Volume 189, Issue 8, pp 656–663 | Cite as

Reirradiation for recurrent malignant brain tumor with radiotherapy or proton beam therapy

Technical considerations based on experience at a single institution
  • M. Mizumoto
  • T. Okumura
  • E. Ishikawa
  • T. Yamamoto
  • S. Takano
  • A. Matsumura
  • Y. Oshiro
  • H. Ishikawa
  • H. Sakurai
  • K. Tsuboi
Original article

Abstract

Background and purpose

Radiotherapy for recurrent malignant brain tumors is usually limited because of the dose tolerance of the normal brain tissue. The goal of the study was to evaluate the efficacy and feasibility of reirradiation for patients with recurrent malignant brain tumors.

Patients and methods

The subjects comprised 26 patients with recurrent malignant brain tumors treated with conventional radiotherapy (RT, n = 8), stereotactic radiotherapy (SRT, n = 10), and proton beam therapy (PBT, n = 8) at our institute. Fifteen patients had glioblastoma, 6 had WHO grade 3 glioma, and 5 had other tumors. The dose of initial radiotherapy was 34.5–94.4 Gy. Different radiation schedules were compared using the equivalent dose in 2-Gy fractions.

Results

Reirradiation was completed in all patients without a severe acute reaction. The reirradiation doses were 30–60 Gy (median, 42.3 Gy) and the total doses for the initial and second treatments were 64.5–150.4 Gy (median, 100.0 Gy). Currently, 11 patients are alive (median follow-up period, 19.4 months) and 15 are dead. The median survival and local control periods after reirradiation of the 26 patients were 18.3 and 9.3 months, respectively. For the 15 patients with glioblastoma, these periods were 13.1 and 11.0 months, respectively. Two patients showed radiation necrosis that was treated by surgery or conservative therapy.

Conclusion

Reirradiation for recurrent malignant brain tumor using conventional RT, SRT, or PBT was feasible and effective in selected cases. Further investigation is needed for treatment optimization for a given patient and tumor condition.

Keywords

Glioblastoma Proton beam therapy Radiotherapy Reirradiation Recurrent 

Erneute Bestrahlung mit üblicher Strahlen- oder Protonentherapie bei rezidivierendem bösartigem Hirntumor

Technische Aspekte basierend auf an einer Einrichtung gesammelten Erfahrungen

Zusammenfassung

Hintergrund und Zielsetzung

Bei bösartigen Hirntumoren ist eine operative Behandlung schwierig und bei rezidivierenden Tumoren schränkt die Dosistoleranz des normalen Hirngewebes eine Strahlentherapie häufig ein. Ziel der Studie war es, die Durchführbarkeit und Wirksamkeit einer erneuten Bestrahlung (Rebestrahlung) bei Patienten mit einem rezidivierenden bösartigen intrakraniellen Tumor zu bewerten.

Patienten und Methoden

Bei den Probanden handelte es sich um 26 Patienten, die mit konventioneller Strahlentherapie (RT, n = 8), stereotaktischer Strahlentherapie (SRT, n = 10) und Protonentherapie (PBT, n = 8) in unserer Einrichtung behandelt wurden. Die Behandlung wurde in Abhängigkeit vom Tumorzustand ausgewählt. Ein Glioblastom hatten 15 Patienten, darunter 6 Patienten mit einem Gliom vom WHO-Grad III. Die Dosis der anfänglichen Strahlentherapie lag bei 34,5–94,4 Gy. Es wurden verschiedene Bestrahlungspläne anhand der Äquivalentdosis in 2-Gy-Fraktionen verglichen.

Ergebnisse

Bei allen Patienten wurde die Rebestrahlung ohne schwere akute Reaktion abgeschlossen. Die Rebestrahlungsdosen betrugen 30–60 Gy (Median 42,3 Gy) und die Gesamtdosen der ersten und zweiten Behandlung 64,5–150,4 Gy (Median 100,0 Gy). Gegenwärtig leben noch 11 Patienten (medianer Nachuntersuchungszeitraum 19,4 Monate), 15 Patienten sind bereits verstorben. Die mediane Überlebenszeit betrug 18,3 Monate und der Zeitraum für die lokale Kontrolle 9,3 Monate bezogen auf alle Patienten sowie 13,1 bzw. 11,0 Monate bezogen auf die Glioblastompatienten. Eine beherrschbare Strahlennekrose hatten 2 der 26 Patienten.

Schlussfolgerungen

Die Rebestrahlung bei rezidivierendem bösartigem Hirntumor anhand konventioneller RT, SRT oder PBT war durchführbar und wirksam. Weitere Untersuchungen sind notwendig, um die optimale Behandlung für einzelne Patienten bzw. einen bestimmten Tumorzustand herauszufinden.

Schlüsselwörter

Glioblastom Protonentherapie Strahlentherapie Rebestrahlung Rezidivierend 

Notes

Acknowledgments

This research is partly supported by the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP). Funding was from departmental sources only.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

References

  1. 1.
    (o A) (2010) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2006Google Scholar
  2. 2.
    Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869PubMedCrossRefGoogle Scholar
  3. 3.
    Combs SE, Widmer V, Thilmann C et al (2005) Stereotactic radiosurgery (SRS), treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173PubMedCrossRefGoogle Scholar
  4. 4.
    Fogh SE, Andrews DW, Glass J et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28:3048–3053PubMedCrossRefGoogle Scholar
  5. 5.
    Fokas E, Wacker U, Gross WG et al (2009) Hypofractionated stereotactic reirradiation of recurrent glioblastomas. Strahlenther Onkol 185:235–240PubMedCrossRefGoogle Scholar
  6. 6.
    Kong DS, Lee JI, Park K et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112:2046–2051PubMedCrossRefGoogle Scholar
  7. 7.
    Minniti G, Armosini V, Salvati M et al (2011) Fractionated stereotactic reirradiation and concurrent temozolomide in patients with recurrent glioblastoma. J Neurooncol 103:683–691PubMedCrossRefGoogle Scholar
  8. 8.
    Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360PubMedCrossRefGoogle Scholar
  9. 9.
    Fukumitsu N, Okumura T, Mizumoto M et al (2012) Outcome of T4 (International Union Against Cancer Staging System, 7th edition) or recurrent nasal cavity and paranasal sinus carcinoma treated with proton beam. Int J Radiat Oncol Biol Phys 83:704–711PubMedGoogle Scholar
  10. 10.
    Igaki H, Tokuuye K, Okumura T et al (2004) Clinical results of proton beam therapy for skull base chordoma. Int J Radiat Oncol Biol Phys 60:1120–1126PubMedCrossRefGoogle Scholar
  11. 11.
    Mizumoto M, Tsuboi K, Igaki H et al (2010) Phase I/II trial of hyperfractionated concomitant boost proton radiotherapy for supratentorial glioblastoma multiforme. Int J Radiat Oncol Biol Phys 77:98–105PubMedCrossRefGoogle Scholar
  12. 12.
    Mizumoto M, Okumura T, Hashimoto T et al (2011) Proton beam therapy for hepatocellular carcinoma: a comparison of three treatment protocols. Int J Radiat Oncol Biol Phys 81:1039–1045PubMedCrossRefGoogle Scholar
  13. 13.
    Oshiro Y, Mizumoto M, Okumura T et al (2012) Results of proton beam therapy without concurrent chemotherapy for patients with unresectable stage III. J Thorac Oncol 7:370–375PubMedCrossRefGoogle Scholar
  14. 14.
    Gerweck LE, Kozin SV (1999) Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol 50:135–142PubMedCrossRefGoogle Scholar
  15. 15.
    Paganetti H, Niemierko A, Ancukiewicz M et al (2002) Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 53:407–421PubMedCrossRefGoogle Scholar
  16. 16.
    Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1997PubMedCrossRefGoogle Scholar
  17. 17.
    Joiner MC, Van der Kogel AJ (1997) The linear-quadratic approach to fractionation and calculation of isoeffect relationships. In: Steel GG (Ed) Basic clinical radiobiology. Oxford University Press, New York, NY, S 106–112Google Scholar
  18. 18.
    Mizumoto M, Sugahara S, Nakayama H et al (2010) Clinical results of proton-beam therapy for locoregionally advanced esophageal cancer. Strahlenther Onkol 186:482–488PubMedCrossRefGoogle Scholar
  19. 19.
    National Cancer Institute (2013) National Cancer Institute common toxicity criteria. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. Accessed March 2013Google Scholar
  20. 20.
    Lorentini S, Amichetti M, Spiazzi L et al (2012) Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. Strahlenther Onkol 188:216–225PubMedCrossRefGoogle Scholar
  21. 21.
    Holy R, Piroth M, Pinkawa M et al (2011) Stereotactic Body Radiation Therapy (SBRT) for treatment of adrenal gland metastases from non-small cell lung cancer. Strahlenther Onkol 187:245–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer Heidelberg Berlin 2013

Authors and Affiliations

  • M. Mizumoto
    • 1
  • T. Okumura
    • 1
  • E. Ishikawa
    • 2
  • T. Yamamoto
    • 2
  • S. Takano
    • 2
  • A. Matsumura
    • 2
  • Y. Oshiro
    • 1
  • H. Ishikawa
    • 1
  • H. Sakurai
    • 1
  • K. Tsuboi
    • 1
    • 3
  1. 1.Department of Radiation OncologyUniversity of TsukubaTsukubaJapan
  2. 2.Department of NeurosurgeryUniversity of TsukubaTsukubaJapan
  3. 3.Proton Medical Research CenterUniversity of TsukubaTsukubaJapan

Personalised recommendations