Strahlentherapie und Onkologie

, Volume 190, Issue 1, pp 68–74 | Cite as

Fibroblast growth factor 2 is of prognostic value for patients with locally advanced squamous cell carcinoma of the head and neck

  • D. RadesEmail author
  • N.D. Seibold
  • M.P. Gebhard
  • F. Noack
  • S.E. Schild
Original article


Background and purpose

Patients with locally advanced SCCHN have a poor prognosis. This study investigated the prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients treated with surgery followed by radiotherapy.

Patients and methods

The impact of FGF-2-expression and 11 additional potential prognostic factors on loco-regional control (LRC), metastases-free survival (MFS), and overall survival (OS) was retrospectively evaluated in 146 patients. Additional factors included age, gender, performance status, pre-radiotherapy hemoglobin levels, tumor site, histologic grade, T-category, N-category, human papilloma virus (HPV) status, extent of resection, and chemotherapy. Univariate analyses were performed with the Kaplan-Meier method and the log-rank test, multivariate analyses with the Cox proportional hazard model.


On multivariate analysis, improved LRC was significantly associated with FGF-2-negativity [risk ratio (RR): 7.33; 95 %-confidence interval (CI): 2.88–19.05; p < 0.001], lower T-category (RR: 2.42; 95 %-CI: 1.47–4.33; p < 0.001), lower N-category (RR: 12.36; 95 %-CI: 3.48–78.91; p < 0.001), and pre-radiotherapy hemoglobin levels ≥ 12 g/dl (RR: 4.18; 95 %-CI: 1.73–10.53; p = 0.002). No factor was significantly associated with improved MFS. Lower T-category showed a trend (RR: 1.59; 95 %-CI: 0.97–2.82; p = 0.069). Better OS was significantly associated with FGF-2-negativity (RR: 5.10; 2.22–11.80; p < 0.001), lower T-category (RR: 2.17; 95 %-CI: 1.38–3.68; p < 0.001), lower N-category (RR: 3.86; 95 %-CI: 1.60–10.85; p = 0.002), and pre-radiotherapy hemoglobin levels ≥ 12 g/dl (RR: 3.20; 95 %-CI: 1.46–7.30; p = 0.004). HPV-positivity showed a trend (RR: 2.36; 95 %-CI: n.a.; p = 0.054).


Tumor cell expression of FGF-2 proved to be an independent prognostic factor for LRC and OS. This factor can help personalize treatment and stratify patients in future trials.


Head-and-neck cancer Radiotherapy Prognostic factors FGF-2 Treatment outcomes 

Der Fibroblastenwachstumsfaktor 2 ist von prognostischer Bedeutung bei Patienten mit lokal fortgeschrittenem Plattenepithelkarzinom der Kopf-Hals-Region


Hintergrund und Ziel

Viele Patienten mit lokal fortgeschrittenem Plattenepithelkarzinom der Kopf-Hals-Region (SCCHN) haben eine schlechte Prognose. In dieser Studie wurde die prognostische Bedeutung der Tumorzellexpression des Fibroblastenwachstumsfaktors 2 (FGF-2) bei Patienten untersucht, bei denen aufgrund eines lokal fortgeschrittenen SCCHN eine Operation mit nachfolgender Strahlentherapie durchgeführt worden war.

Patienten und Methoden

Der Einfluss von FGF-2 und 11 weiteren Faktoren auf die lokoregionäre Kontrolle (LRC), das metastasenfreie Überleben (MFS) und das Gesamtüberleben (OS) wurde retrospektiv bei 146 Patienten untersucht. Weitere Faktoren waren Alter, Geschlecht, Allgemeinzustand, Hämoglobinwert vor Bestrahlung, Tumorlokalisation, Grading, T-Kategorie, N-Kategorie, Humanes-Papillomavirus(HPV)-Status, Resektionsausmaß und Chemotherapie. Die univariaten Analysen erfolgten mit der Kaplan-Meier-Methode und dem Log-rank-Test, die Multivarianzanalysen mit dem Proportional-Hazards-Modell nach Cox.


In der Multivarianzanalyse war eine verbesserte LRC signifikant mit FGF-2-Negativität (Risk Ratio, RR: 7,33; 95%-Konfidenzintervall, 95%-KI: 2,88–19,05; p < 0,001), niedrigerer T-Kategorie (RR: 2,42; 95%-KI: 1,47–4,33; p < 0,001), niedrigerer N-Kategorie (RR: 12,36; 95%-KI: 3,48–78,91; p < 0,001) und Hämoglobinwerten vor Bestrahlung ≥ 12 g/dl (RR: 4,18; 95%-KI: 1,73–10,53; p = 0,002) assoziiert. Kein Faktor war signifikant mit dem MFS assoziiert. Eine niedrigere T-Kategorie zeigte einen Trend (RR: 1,59; 95%-KI: 0,97–2,82; p = 0,069). Ein besseres OS war signifikant mit FGF-2-Negativität (RR: 5,10; 2,22–11,80; p < 0,001), niedrigerer T-Kategorie (RR: 2,17; 95%-KI: 1,38–3,68; p < 0,001), niedrigerer N-Kategorie (RR: 3,86; 95%-KI: 1,60–10,85; p = 0,002) und Hämoglobinwerten ≥ 12 g/dl (RR: 3,20; 95%-KI: 1,46–7,30; p = 0,004) assoziiert. HPV-Positivität zeigte einen Trend (RR: 2,36; 95%-KI: n.a.; p = 0,054).


Die Tumorexpression von FGF-2 erwies sich als unabhängiger Prognosefaktor für LRC und OS. Dieser Faktor kann bei der Personalisierung der Therapie und der Stratifikation in zukünftigen Studien helfen.


Kopf-Hals-Tumoren Strahlentherapie Prognostische Faktoren FGF-2 Behandlungserfolg 


Conflict of interest

The corresponding author states that there are no conflicts of interest.


  1. 1.
    Bandoh N, Hayashi T, Takahara M et al (2004) VEGF and bFGF expression and microvessel density of maxillary sinus squamous cell carcinoma in relation to p53 status, spontaneous apoptosis and prognosis. Cancer Lett 208:215–225PubMedCrossRefGoogle Scholar
  2. 2.
    Barclay C, Li AW, Geldenhuys L et al (2005) Basic fibroblast growth factor (FGF-2) overexpression is a risk factor for esophageal cancer recurrence and reduced survival, which is ameliorated by coexpression of the FGF-2 antisense gene. Clin Cancer Res 11:7683–7691PubMedCrossRefGoogle Scholar
  3. 3.
    Becker A, Stadler P, Lavey RS et al (2000) Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 46:459–466PubMedCrossRefGoogle Scholar
  4. 4.
    Berger W, Setinek U, Mohr T et al (1999) Evidence for a role of FGF-2 and FGF receptors in the proliferation of non-small lung cancer cells. Int J Cancer 83:415–423PubMedCrossRefGoogle Scholar
  5. 5.
    Boelaert K, McCabe CJ, Tannahill LA et al (2003) Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 88:2341–2347PubMedCrossRefGoogle Scholar
  6. 6.
    Cerezo L, Millan I, Torre A et al (1992) Prognostic factors for survival and tumor control in cervical lymph node metastases from head and neck cancer. A multivariate study of 492 cases. Cancer 69:1224–1234PubMedCrossRefGoogle Scholar
  7. 7.
    Cvek J, Kubes J, Skacelikova E et al (2012) Hyperfractionated accelerated radiotherapy with concomitant integrated boost of 70–75 Gy in 5 weeks for advanced head and neck cancer. A phase I dose escalation study. Strahlenther Onkol 188:666–670PubMedCrossRefGoogle Scholar
  8. 8.
    Denis F, Garaud P, Bardet E et al (2004) Final results of the 94-01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J Clin Oncol 22:69–76PubMedCrossRefGoogle Scholar
  9. 9.
    Dietz A, Rudat V, Vanselow B et al (1999) Predictive value of serum levels of basic fibroblast growth factor, vascular endothelial growth factor and matrix metalloproteinase-2 in advanced carcinomas of the head and neck. HNO 47:695–701PubMedCrossRefGoogle Scholar
  10. 10.
    Due AK, Vogelius IR, Aznar MC et al (2012) Methods for estimating the site of origin of locoregional recurrence om head and neck squamous cell carcinoma. Strahlenther Onkol 188:671–676PubMedCrossRefGoogle Scholar
  11. 11.
    Forootan SS, Ke Y, Jones AS, Helliwell TR (2000) Basic fibroblast growth factor and angiogenesis in squamous carcinoma of the tongue. Oral Oncol 36:437–443PubMedCrossRefGoogle Scholar
  12. 12.
    Kaplan EL, Meier P (1958) Non parametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRefGoogle Scholar
  13. 13.
    Leemans CR, Tiwari R, Nauta JJ et al (1993) Regional lymph node involvement and its significance in the development of distant metastases in head and neck carcinoma. Cancer 71:452–456PubMedCrossRefGoogle Scholar
  14. 14.
    Myoken Y, Myoken Y, Okamoto T et al (1994) Immunocytochemical localization of fibroblast growth factor-1 (FGF-1) and FGF-2 in oral squamous cell carcinoma (SCC). J Oral Pathol Med 23:451–456PubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen NP, Vock J, Chi A et al (2012) Impact of intensity-modulated and image-guided radiotherapy on elderly patients undergoing chemoradiation for locally advanced head and neck cancer. Strahlenther Onkol 188:677–685PubMedCrossRefGoogle Scholar
  16. 16.
    Petersen I, Schewe C, Schlüns K et al (2007) Inter-laboratory validation of PCR-based HPV detection in pathology specimens. Virchows Arch 451:701–716PubMedCrossRefGoogle Scholar
  17. 17.
    Rades D, Seibold ND, Gebhard MP et al (2011) Prognostic factors (including HPV status) for irradiation of locally advanced squamous cell carcinoma of the head and neck (SCCHN). Strahlenther Onkol 187:626–632PubMedCrossRefGoogle Scholar
  18. 18.
    Rades D, Setter C, Dahl O et al (2012) Fibroblast growth factor 2—a predictor of outcome for patients irradiated for stage II–III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 82:442–447PubMedCrossRefGoogle Scholar
  19. 19.
    Rades D, Stoehr M, Kazic N et al (2008) Locally advanced stage IV squamous cell carcinoma of the head and neck: impact of pre-radiotherapy hemoglobin level and interruptions during radiotherapy. Int J Radiat Oncol Biol Phys 70:1108–1114PubMedCrossRefGoogle Scholar
  20. 20.
    Wentzensen N, Knebel-Doeberitz M (2004) Viral cancerogenesis of head and neck tumors. Pathologe 25:21–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Heidelberg Berlin 2013

Authors and Affiliations

  • D. Rades
    • 1
    Email author
  • N.D. Seibold
    • 1
  • M.P. Gebhard
    • 2
  • F. Noack
    • 2
  • S.E. Schild
    • 3
  1. 1.Department of Radiation OncologyUniversity of LübeckLübeckGermany
  2. 2.Institute of PathologyUniversity of LübeckLübeckGermany
  3. 3.Department of Radiation OncologyMayo Clinic ScottsdaleScottsdaleUSA

Personalised recommendations