Strahlentherapie und Onkologie

, Volume 189, Issue 6, pp 448–455 | Cite as

CyberKnife robotic image-guided stereotactic radiotherapy for oligometastic cancer

A prospective evaluation of 95 patients/118 lesions
  • B.A. Jereczek-Fossa
  • I. Bossi-Zanetti
  • R. Mauro
  • G. Beltramo
  • L. Fariselli
  • L.C. Bianchi
  • C. Fodor
  • P. Fossati
  • G. Baroni
  • R. Orecchia
Original article

Abstract

Purpose

To evaluate the outcome of robotic CyberKnife (Accuray Inc. Sunnyvale, USA)-based stereotactic radiotherapy (CBK-SRT) for oligometastic cancer patients.

Patients and methods

Between May 2007 and December 2009, 95 patients with a total of 118 lesions underwent CBK-SRT (median dose 24 Gy in 3 fractions). Inclusion criteria: adult patients with limited volume cancer; suitability for SRT but not for other local therapies. Primary diagnoses included breast, lung, head and neck, gastrointestinal and other malignancies. Prostate cancer patients were excluded. Concomitant systemic therapy was given in 40 % of cases and median follow-up was 12 months. Toxicity and tumor response were evaluated using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) Scale and Response Evaluation Criteria in Solid Tumors RECIST.

Results

Toxicity was rare and observed mainly in patients with comorbidities or uncontrolled cancer. Out of 87 evaluable lesions, complete radiological response, partial response, stabilization and progressive disease were observed in 15 (17 %), 25 (29 %), 34 (39 %) and 13 (15 %) lesions, respectively. Upon restricting the analysis to lesions treated with CBK-SRT alone (no concomitant therapy), response- and local control (LC) rates remained similar. Actuarial 3-year in-field progression-free survival- (i.e. LC), progression-free survival- (PFS) and overall-survival (OS) rates were 67.6, 18.4, and 31.2 %, respectively. LC was reduced in cases of early recurrence. OS- and cause-specific survival (CSS) rates were significantly lower in patients treated for visceral lesions. Failures were predominantly out-field.

Conclusion

CBK-SRT is a feasible therapeutic approach for oligometastastic cancer patients that provides long-term in-field tumor control with a low toxicity profile. Further investigations should focus on dose escalation and optimization of the combination with systemic therapies.

Keywords

Toxicity Survival Positron-emission tomography Computed tomography Metastasis 

Robotische bildgeführte stereotaktische Bestrahlung mit dem Cyberknife für oligometastatischen Krebs

Eine prospektive Studie mit 95 Patienten/118 Läsionen

Zusammenfassung

Hintergrund und Ziel

Das Ziel dieser Arbeit ist die Beurteilung der robotischen, stereotaktischen Strahlentherapie mit dem Cyberknife-System (CBK-SRT; Accuray Inc. Sunnyvale, US) für die Behandlung oligometastatischer Krebspatienten.

Patienten und Methoden

Zwischen Mai 2007 und Dezember 2009 wurden 95 Patienten (insgesamt 118 Läsionen) mit CBK-SRT (Medianwert 24 Gy in 3 Fraktionen) behandelt. Primärdiagnosen waren Brustkrebs, Lungenkrebs, Kopf- und Halskrebs, Magen-Darm-Krebs und andere bösartige Tumoren. Eine begleitende systemische Therapie wurde bei 40 % der Patienten durchgeführt. Der mittlere Nachbeobachtungszeitraum betrug 12 Monate. Die Toxizität und das Ansprechen des Tumors auf die Therapie wurden mit der Bewertungsskala der „Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer“(RTOG/EORTC) und der „Response Evaluation Criteria in Solid Tumors“ (RECIST) beurteilt.

Ergebnisse

Eine schwache Toxizität wurde besonders in Patienten mit Komorbiditäten oder unkontrolliertem Krebswachstum beobachtet. Unter 87 auswertbaren Läsionen wurde ein komplettes radiologisches Ansprechen, ein teilweises Ansprechen, eine Stabilisierung und ein Fortschreiten der Erkrankung in jeweils 15 (17 %), 25 (29 %), 34 (39 %) und 13 Läsionen (15 %) beobachtet. Wenn die Analyse auf mit CBK-SRT behandelte Läsionen (keine begleitende Therapie) beschränkt wurde, wurden ähnliche Ansprechraten und lokale Tumorkontrolle ausgewertet. Das 3-jährige, lokale progressionsfreie Überleben (LC, lokale Kontrolle), das progressionsfreie Überleben (PFS) und das allgemeine Überleben (OS) lagen jeweils bei 67,6%, 18,4% und 31,2 %. Im Falle der frühen Rezidive war die LC niedriger. Deutlich niedrigere OS und ursachenspezifische Überlebensraten (CSS) wurden in Patienten mit Magen-Darm-Krebs beobachtet. Das Therapieversagen war hauptsächlich außerhalb des Strahlenfelds.

Schlussfolgerung

Der therapeutische Ansatz mit CBK-SRT funktioniert grundsätzlich für Patienten mit oligometastatischem Krebs. Es wirkt eine lange andauernde Tumorkontrolle innerhalb des Strahlenfelds mit weniger Toxizität. Weitere Untersuchungen zur Dosissteigerung und Optimierung der Kombination mit systemischer Therapie sollten durchgeführt werden.

Schlusselwörter

Toxizität Überleben Positronenemissionstomographie Computertomographie Metastasierung 

References

  1. 1.
    Benedict SH, Lin PS, Zwicker RD et al (1997) The biological effectiveness of intermittent irradiation as a function of overall treatment time: development of correction factors for linac based stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 37:765–769PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng YC, Ueno NT (2012) Improvement of survival and prospect of cure in patients with metastatic breast cancer. Breast Cancer 19:191–199PubMedCrossRefGoogle Scholar
  3. 3.
    Chua TC, Liauw W, Chu F, Morris DL (2012) Viewing metastatic colorectal cancer as curable chronic disease. Am J Clin Oncol 35:77–80PubMedCrossRefGoogle Scholar
  4. 4.
    Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346PubMedCrossRefGoogle Scholar
  5. 5.
    D’Agostino GR, Autorino R, Pompucci A et al (2011) Whole-brain radiotherapy combined with surgery or stereotactic radiotherapy in patients with brain oligometastases: long-term analysis. Strahlenther Onkol 187:421–425CrossRefGoogle Scholar
  6. 6.
    Dahele M, Senan S (2011) The role of stereotactic ablative radiotherapy for early-stage and oligometastatic non-small cell lung cancer: evidence for changing paradigms. Cancer Res Treat 43:75–82PubMedCrossRefGoogle Scholar
  7. 7.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247PubMedCrossRefGoogle Scholar
  8. 8.
    Fokas E, Henzel M, Engenhart-Cabillic R (2010) A comparison of radiotherapy with radiotherapy plus surgery for brain metastases from urinary bladder cancer: analysis of 62 patients. Strahlenther Onkol 186:565–571 (Erratum in: Strahlenther Onkol 2011;187:267)Google Scholar
  9. 9.
    Fowler JF, Welsh JS, Howard SP (2004) Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys 159:242–249CrossRefGoogle Scholar
  10. 10.
    Geiger S, Cnossen JA, Horster S et al (2011) Long-term follow-up of patients with metastatic breast cancer: results of a retrospective, single-center analysis from 2000–2005. Anticancer Drugs 22:933–939PubMedCrossRefGoogle Scholar
  11. 11.
    Gill B, Oermann E, Ju A et al (2012) Fiducial-free CyberKnife stereotactic body radiation therapy (SBRT) for single vertebral body metastases: acceptable local control and normal tissue tolerance with 5 fraction approach. Front Oncol 2:39PubMedCrossRefGoogle Scholar
  12. 12.
    Halley ML, Gerszten PC, Heron DE et al (2011) Efficacy and cost-effectiveness analysis of external beam and stereotactic body radiation therapy in the treatment of spine metastases: a matched-pair analysis. J Neurosurg Spine 14:537–542CrossRefGoogle Scholar
  13. 13.
    Jabbour SK, Daroui P, Moore D et al (2011) A novel paradigm in the treatment of oligometastatic non-small cell lung cancer. J Thorac Dis 3:4–9PubMedGoogle Scholar
  14. 14.
    Jereczek-Fossa BA, Beltramo G, Fariselli L et al (2012) Robotic image-guided stereotactic radiotherapy, for isolated recurrent primary, lymph node or metastastic prostate cancer. Int J Radiat Oncol Biol Phys 82:889–897PubMedCrossRefGoogle Scholar
  15. 15.
    Kaplan E, Meier P (1958) Non-parametric estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRefGoogle Scholar
  16. 16.
    Lee MK, Baek SK, Kim SY et al (2011) Awareness of incurable cancer status and health-related quality of life among advanced cancer patients: a prospective cohort study. Palliat Med (Epub ahead of print)Google Scholar
  17. 17.
    Milano MT, Katz AW, Zhang H, Okunieff P (2012) Oligometastases treated with stereotactic body radiotherapy: long term follow-up of prospective study. Int J Radiat Oncol Biol Phys 83:878–886PubMedGoogle Scholar
  18. 18.
    Riboldi M, Orecchia R, Baroni G (2012) Real-time tumour tracking in particle therapy: technological developments and future perspectives. Lancet Oncol 13:e383–e391PubMedCrossRefGoogle Scholar
  19. 19.
    Ricardi U, Filippi AR, Guarneri A et al (2012) Stereotactic body radiation therapy for lung metastases. Lung Cancer 75:77–81PubMedCrossRefGoogle Scholar
  20. 20.
    Salama JK, Hasselle MD, Chmura SJ et al (2012) Stereotactic body radiotherapy for multisite extracranial metastases. Cancer 118:2962–2970PubMedCrossRefGoogle Scholar
  21. 21.
    Thariat J, Li G, Angellier G et al (2009) Current indications and ongoing clinical trials with CyberKnife stereotactic radiotherapy in France in 2009. Bull Cancer 96:853–864 (article in French)PubMedGoogle Scholar
  22. 22.
    Torshabi AE, Pella A, Riboldi M, Baroni G (2010) Targeting accuracy in real-time tumor tracking via external surrogates: a comparative study. Technol Cancer Res Treat 9:551–562PubMedGoogle Scholar
  23. 23.
    Vavassori A, Jereczek-Fossa BA, Beltramo G et al (2010) Image-guided robotic radiosurgery as salvage therapy for locally recurrent prostate cancer after external beam irradiation: retrospective feasibility study on six cases. Tumori 96:71–75PubMedGoogle Scholar
  24. 24.
    Voigtmann K, Köllner V, Einsle F et al (2010) Emotional state of patients in radiotherapy and how they deal with their disorder. Strahlenther Onkol 186:229–235PubMedCrossRefGoogle Scholar
  25. 25.
    Wiechselbaum RR, Hellman S (2011) Oligometastases revisited. Nat Rev Clin Oncol 8:378–382Google Scholar
  26. 26.
    Wiggenraad R, Verbeek-de Kanter A, Mast M et al (2012) Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases: a single centre study. Strahlenther Onkol 188:696–701PubMedCrossRefGoogle Scholar
  27. 27.
    Wilhelm M (2012) Impaired cognitive function and structural changes in cerebral white matter after chemotherapy. Strahlenther Onkol 188:525–526 (article in German)PubMedCrossRefGoogle Scholar
  28. 28.
    Xie Y, Djajaputra D, King CR et al (2008) Intrafractional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 72:236–246PubMedCrossRefGoogle Scholar
  29. 29.
    Zabel-du Bois A, Milker-Zabel S, Henzel M et al (2012) Evaluation of time, attendance of medical staff, and resources during stereotactic radiotherapy/radiosurgery: QUIRO-DEGRO Trial. Strahlenther Onkol (Epub ahead of print)Google Scholar

Copyright information

© Urban & Vogel 2013

Authors and Affiliations

  • B.A. Jereczek-Fossa
    • 1
    • 6
  • I. Bossi-Zanetti
    • 1
    • 6
  • R. Mauro
    • 1
    • 6
  • G. Beltramo
    • 3
  • L. Fariselli
    • 4
  • L.C. Bianchi
    • 3
  • C. Fodor
    • 1
  • P. Fossati
    • 1
    • 2
    • 6
  • G. Baroni
    • 2
    • 5
  • R. Orecchia
    • 1
    • 2
    • 6
  1. 1.Department of RadiotherapyEuropean Institute of OncologyMilanItaly
  2. 2.National Center for Oncological Hadrontherapy (CNAO) FoundationPavia, MilanItaly
  3. 3.CyberKnife Center CDIMilanItaly
  4. 4.Radiotherapy UnitCarlo Besta Neurological Institute FoundationMilanItaly
  5. 5.Department of BioengineeringPolitecnico di MilanoMilanItaly
  6. 6.University of MilanMilanItaly

Personalised recommendations