Strahlentherapie und Onkologie

, Volume 188, Issue 12, pp 1080–1084 | Cite as

Clinical evaluation of a commercial surface-imaging system for patient positioning in radiotherapy

  • F. StielerEmail author
  • F. Wenz
  • D. Scherrer
  • M. Bernhardt
  • F. Lohr
Original article



Laser scanning-based patient surface positioning and surveillance may complement image-guided radiotherapy (IGRT) as a nonradiation-based approach. We investigated the performance of an optical system compared to standard kilovoltage cone-beam computed tomography (CBCT) and its potential to reduce the number of daily CBCTs.

Patients and methods

We analyzed the patient positioning of 153 treatment fractions in 21 patients applied to three different treatment regions. Patients were first scanned with CBCT, shifted to the optimal isocenter position, and an optical scan was performed to verify the matching in relation to CBCT.


For the head-and-neck region, the lateral/longitudinal/vertical/rotational/roll and pitch shift was 0.9 ± 1.8 mm/−2.7± 3.8 mm/−0.8± 3.6 mm/0.0± 1.1°/−0.5± 2.1°/0.2± 1.6°. For the thorax, the lateral/longitudinal/vertical/roll and pitch shift was −1.2± 3.6 mm/0.8± 5.1 mm/0.8± 4.3 mm/0.6± 1.4°/0.1± 0.9°/0.3± 1.0°. For the pelvis, the respective values were −2.5± 4.1 mm/4.6± 7.3 mm/−5.1± 7.4 mm/0.3± 1.1°/-0.5± 1.0°/0.3± 2.1°. In total, the recorded disagreement was −1.0± 3.6 mm/1.0± 6.3 mm/−1.8± 5.9 mm/0.3± 1.2°/−0.3± 1.5°/0.2± 1.7°.


This analysis showed good agreement between the optical scanner approach and CBCT. The optical system holds potential to ensure precise patient positioning and reduced CBCT frequency in tumor locations with fixed relation to surface structures.


Image-guided radiotherapy Optical surface laser scanner Cone-beam computed tomography Patient positioning Tumor location 

Klinische Bewertung eines kommerziellen Oberflächenbildgebungssystems zur Patientenpositionierung bei Strahlentherapie



Die Abtastung der Patientenoberfläche mittels Laser zur Positionierung hat das Potenzial, die bildgesteuerte Strahlentherapie zu ergänzen. Wir untersuchten die Leistung eines optischen Systems im Vergleich zur normalen digitalen Volumentomographie („kV cone beam computed tomography“, CBCT) und deren Potenzial, die Zahl der notwendigen Positionierungscomputertomographien zu reduzieren.

Material und Methoden

Wir untersuchten die Patientenpositionierung bei 153 Fraktionen an 21 Patienten (drei verschiedene Bestrahlungsregionen). Die Patienten wurden zuerst mit der CBCT positioniert und danach mit dem optischen System gescannt, um die Abweichung zur CBCT zu erfassen.


Für die Kopf-Hals-Region betrugen die Abweichungen in lateraler/longitudinaler/vertikaler/rotationaler/rollender/kippender Richtung 0,9± 1,8 mm/−2,7± 3,8 mm/-0,8± 3,6 mm/0,0± 1,1°/−0,5± 2,1°/0,2± 1,6°. Für die Thoraxregion betrug die laterale/longitudinale/vertikale/rotationale/rollende/kippende Abweichung −1,2± 3,6 mm/0,8± 5,1 mm/0,8± 4,3 mm/0,6 ± 1,4°/0,1 ± 0,9°/0,3 ± 1,0°. Für die Beckenregion waren die entsprechenden Abweichungen −2,5 ± 4,1 mm/4,6 ± 7,3 mm/−5,1 ± 7,4 mm/0,3 ± 1,1°/−0,5 ± 1,0°/0,3 ± 2,1°. Die Abweichung über alle Fraktionen betrug −1,0 ± 3,6 mm/1,0 ± 6,3 mm/−1,8 ± 5,9 mm/0,3 ± 1,2°/−0,3 ± 1,5°/0,2 ± 1,7°.


Die Analyse zeigte eine gute Übereinstimmung zwischen dem optischen System und der CBCT. Das optische System hat das Potenzial zur präzisen Patientenpositionierung mit verminderter Anzahl von CBCT-Aufnahmen bei Tumorlokalisationen mit fester Relation zur Patientenoberfläche.


Bildgesteuerte Strahlentherapie Optischer Oberflächenscanner Digitale Volumentomographie Patientenpositionierung Tumorlokalisationen 



This work was supported within the framework of a Research Cooperation Agreement between the Department of Radiation Oncology, Mannheim University Medical Center, and C-Rad (Sweden).

Conflict of interest

On behalf of all authors, the corresponding author states the following: Research agreements with C-Rad and Elekta Inc. regarding image guidance and patient positioning are in place.


  1. 1.
    Boda-Heggemann J et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291PubMedCrossRefGoogle Scholar
  2. 2.
    Walter C et al (2007) Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother Oncol 85(3):418–423PubMedCrossRefGoogle Scholar
  3. 3.
    Amer A et al (2007) Imaging doses from the Elekta Synergy X-ray cone beam CT system. Br J Radiol 80(954):476–482PubMedCrossRefGoogle Scholar
  4. 4.
    Pallotta S et al (2012) A phantom evaluation of Sentinel(), a commercial laser/camera surface imaging system for patient setup verification in radiotherapy. Med Phys 39(2):706–712PubMedCrossRefGoogle Scholar
  5. 5.
    Gopan, O, Wu Q (2012) Evaluation of the Accuracy of a 3D Surface Imaging System for Patient Setup in Head and Neck Cancer Radiotherapy. Int J Radiat Oncol Biol PhysGoogle Scholar
  6. 6.
    Kauweloa KI et al (2012) GateCT surface tracking system for respiratory signal reconstruction in 4DCT imaging. Med Phys 39(1):492–502PubMedCrossRefGoogle Scholar
  7. 7.
    Placht S et al (2012) Fast time-of-flight camera based surface registration for radiotherapy patient positioning. Med Phys 39(1):4–17PubMedCrossRefGoogle Scholar
  8. 8.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans. Pattern Anal Mach Intell 14:239–255CrossRefGoogle Scholar
  9. 9.
    Moser T et al (2012) Clinical Evaluation of a Laser Surface Scanning System in 120 Patients for Improving Daily Setup Accuracy in Fractionated Radiation Therapy. Int J Radiat Oncol Biol PhysGoogle Scholar
  10. 10.
    Hansen EK et al (2006) Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 64(2):355–362PubMedCrossRefGoogle Scholar
  11. 11.
    Ho KF et al (2012) Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy. Int J Radiat Oncol Biol Phys 82(3):e375–e382PubMedCrossRefGoogle Scholar
  12. 12.
    Giraud P et al (2003) Respiration-gated radiotherapy: current techniques and potential benefits. Cancer Radiother 7(Suppl 1):15s–25sPubMedGoogle Scholar
  13. 13.
    Lorchel F et al (2006) Dosimetric consequences of breath-hold respiration in conformal radiotherapy of esophageal cancer. Phys Med 22(4):119–126PubMedCrossRefGoogle Scholar
  14. 14.
    Guckenberger M et al (2012) Motion Compensation in Radiotherapy. Biomedical Engineering 40(3):187–197Google Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • F. Stieler
    • 1
    Email author
  • F. Wenz
    • 1
  • D. Scherrer
    • 1
  • M. Bernhardt
    • 1
  • F. Lohr
    • 1
  1. 1.Department of Radiation Therapy and Radiation OncologyUniversity Medical Center Mannheim, University of HeidelbergMannheimGermany

Personalised recommendations