Strahlentherapie und Onkologie

, Volume 188, Issue 12, pp 1139–1145 | Cite as

Plasminogen activator inhibitor-1 (PAI-1) expression in relation to hypoxia and oncoproteins in clinical cervical tumors

  • P.C. Lara
  • M. Lloret
  • A. Valenciano
  • B. Clavo
  • B. Pinar
  • A. Rey
  • L. A. Henríquez-HernándezEmail author
Original article



Ziel war es, die Rolle von PAI-1 und seinen Zusammenhang mit Hypoxie und der Expression von p53, Ku70/80 und Cyclin D1 bei Zervixkarzinompatientinnen zu erforschen.

Material und Methoden

PAI-1, Cyclin D1 und p53 sowie die Tumoroxygenierung wurden bei 43 aufeinanderfolgenden Patientinnen mit lokalisiertem Zervixkarzinom bestimmt. Die Expression der Onkoproteine wurde mittels Immunhistochemie identifiziert. Die Tumoroxygenierung wurde mithilfe eines polarographischen Probensystems “pO2 Histography” gemessen.


Die PAI-Expression wurde in 32,6% als negativ und in 18,6% der Fälle als überexprimiert angesehen. Cyclin D1 zeigte eine mittlere Expression von 5,0 (Spanne: 0–70). Wir beobachteten einen positiven Zusammenhang zwischen PAI-Expression und verändertem p53 (p = 0,049) und Cyclin D1 (p = 0,02). Ein antiproportionales Verhältnis wurde für die PAI- und Ku70/80-Expression festgestellt (p = 0,042). Die Cyclin-D1-Färbung nahm mit dem Tumorvolumen zu (r = 0,314, p = 0,009). Es konnte kein signifikanter Zusammenhang zwischen PAI und Hypoxämie oder anderen klinisch-pathologischen Parametern beobachtet werden.


Den vorliegenden Ergebnisse zufolge scheint die PAI-2-Überexpression – neben der Downregulierung der DNA-Reparatur mittels nichthomologem Endjoining (niedrige Ku70/80-Expression) in Kombination mit einer erhöhten p53- und Cyclin-D1-Expression – am Tumorverhalten des Zervixkarzinoms beteiligt zu sein.


PAI-1 Cervical carcinoma Cyclin D1 p53 Hypoxia 

Rolle der Expression von Plasminogenaktivatorinhibitor 1 (PAI-1) in Bezug auf Hypoxie und Onkoproteine beim Zervixkarzinom



Explore the role of plasminogen activator inhibitor-1 (PAI-1) in cervical cancer and its relationship to hypoxia and the expression of p53, Ku70/80, and cyclin D1.

Material and methods

The expression of PAI-1, cyclin D1, and p53, together with tumor oxygenation, were determined in 43 consecutive patients suffering from localized cervical carcinoma. Oncoprotein expression was determined by immunohistochemistry. Tumor oxygenation was measured using a polarographic probe system, „pO2 histography.“


PAI expression was considered negative in 32.6% and overexpressed in 18.6% of cases. Cyclin D1 showed a median expression of 5.0 (range 0–70). We observed a positive association between PAI expression and altered p53 (p = 0.049) and cyclin D1 (p = 0.020). An inverse association was detected between PAI and Ku70/80 expression (p = 0.042). Cyclin D1 staining increased according to tumor volume (r = 0.314, p = 0.009). We did not observe a significant association between PAI and hypoxia or other clinicopathological parameters.


The present results show that PAI-1 overexpression is associated with nonhomologous end-joining DNA repair down-regulation (low Ku70/80 expression) and with increased p53 and cyclin D1 expression, and they suggest that PAI-1 plays a role in the tumor behavior in cervical carcinoma.


PAI-1 Zervixkarzinom Cyclin D1 p53 Hypoxie 



This work was subsidized by grants: FIS 1035/98, 0855/01. A. Valenciano was supported by an educational grant from the Instituto Canario de Investigación del Cáncer (ICIC). We thank Dr. Holger Sterzik for his help with the German translation.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.


  1. 1.
    Carnegie JA, Cabaca O (1993) Extracellular matrix composition and resilience: two parameters that influence the in vitro migration and morphology of rat inner cell mass-derived cells. Biol Reprod 48:287–299PubMedCrossRefGoogle Scholar
  2. 2.
    Kadler K (2004) Matrix loading: assembly of extracellular matrix collagen fibrils during embryogenesis. Birth Defects Res C Embryo Today 72:1–11PubMedCrossRefGoogle Scholar
  3. 3.
    Davidson LA, Keller R, DeSimone DW (2004) Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev Dyn 231:888–895PubMedCrossRefGoogle Scholar
  4. 4.
    Mwale F, Tchetina E, Wu CW, Poole AR (2002) The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Miner Res 17:275–283PubMedCrossRefGoogle Scholar
  5. 5.
    Wiman B (1995) Plasminogen activator inhibitor 1 (PAI-1) in plasma: its role in thrombotic disease. Thromb Haemost 74:71–76PubMedGoogle Scholar
  6. 6.
    Paramo JA, Alfaro MJ, Rocha E (1985) Postoperative changes in the plasmatic levels of tissue-type plasminogen activator and its fast-acting inhibitor—relationship to deep vein thrombosis and influence of prophylaxis. Thromb Haemost 54:713–716PubMedGoogle Scholar
  7. 7.
    Goto D, Fujii S, Kaneko T et al (2003) Intracellular signal transduction modulating expression of plasminogen activator inhibitor-1 in adipocytes. Biochem Pharmacol 65:1907–1914PubMedCrossRefGoogle Scholar
  8. 8.
    Sakkinen PA, Wahl P, Cushman M et al (2000) Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol 152:897–907PubMedCrossRefGoogle Scholar
  9. 9.
    Bodary PF, Wickenheiser KJ, Eitzman DT (2002) Recent advances in understanding endogenous fibrinolysis: implications for molecular-based treatment of vascular disorders. Expert Rev Mol Med 4:1–10PubMedCrossRefGoogle Scholar
  10. 10.
    Sternlicht MD, Dunning AM, Moore DH et al (2006) Prognostic value of PAI1 in invasive breast cancer: evidence that tumor-specific factors are more important than genetic variation in regulating PAI1 expression. Cancer Epidemiol Biomarkers Prev 15:2107–2114PubMedCrossRefGoogle Scholar
  11. 11.
    Jankun J, Yang J, Zheng H et al (2012) Remarkable extension of PAI-1 half-life surprisingly brings no changes to its structure. Int J Mol Med 29:61–64PubMedGoogle Scholar
  12. 12.
    Markl B, Renk I, Oruzio DV et al (2010) Tumour budding, uPA and PAI-1 are associated with aggressive behaviour in colon cancer. J Surg Oncol 102:235–241PubMedCrossRefGoogle Scholar
  13. 13.
    Malinowsky K, Bollner C, Hipp S et al (2010) UPA and PAI-1 analysis from fixed tissues—new perspectives for a known set of predictive markers. Curr Med Chem 17:4370–4377PubMedCrossRefGoogle Scholar
  14. 14.
    Samarakoon R, Higgins PJ (2002) MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. J Cell Sci 115:3093–3103PubMedGoogle Scholar
  15. 15.
    Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ (2012) TGF-beta1 –> SMAD/p53/USF2 –>PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res 347:117–128PubMedCrossRefGoogle Scholar
  16. 16.
    Higgins SP, Samarakoon R, Higgins CE et al (2009) TGF-beta1-Induced expression of the anti-apoptotic pai-1 protein requires egfr signaling. Cell Commun Insights 2:1–11PubMedGoogle Scholar
  17. 17.
    Kimura H, Li X, Torii K et al (2009) Dexamethasone enhances basal and TNF-alpha-stimulated production of PAI-1 via the glucocorticoid receptor regardless of 11beta-hydroxysteroid dehydrogenase 2 status in human proximal renal tubular cells. Nephrol Dial Transplant 24:1759–1765PubMedCrossRefGoogle Scholar
  18. 18.
    Miyagawa R, Asakura T, Nakamura T et al (2010) Increased expression of plasminogen activator inhibitor type-1 (PAI-1) in HEPG2 cells induced by insulin mediated by the 3’-untranslated region of the PAI-1 gene and its pharmacologic implications. Coron Artery Dis 21:144–150PubMedCrossRefGoogle Scholar
  19. 19.
    Fogari R, Zoppi A, Mugellini A et al (2011) Role of angiotensin II in plasma PAI-1 changes induced by imidapril or candesartan in hypertensive patients with metabolic syndrome. Hypertens Res 34:1321–1326PubMedCrossRefGoogle Scholar
  20. 20.
    McCarty MF (2005) De novo synthesis of diacylglycerol in endothelium may mediate the association between PAI-1 and the insulin resistance syndrome. Med Hypotheses 64:388–393PubMedCrossRefGoogle Scholar
  21. 21.
    Ahn YT, Chua MS, Whitlock JP Jr et al (2010) Rodent-specific hypoxia response elements enhance PAI-1 expression through HIF-1 or HIF-2 in mouse hepatoma cells. Int J Oncol 37:1627–1638PubMedGoogle Scholar
  22. 22.
    Sprague LD, Tomaso H, Mengele K et al (2007) Effects of hypoxia and reoxygenation on the expression levels of the urokinase-type plasminogen activator, its inhibitor plasminogen activator inhibitor type-1 and the urokinase-type plasminogen activator receptor in human head and neck tumour cells. Oncol Rep 17:1259–1268PubMedGoogle Scholar
  23. 23.
    Offersen BV, Alsner J, Ege Olsen K et al (2008) A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumours from 408 patients diagnosed with early breast cancer. Acta Oncol 47:618–632PubMedCrossRefGoogle Scholar
  24. 24.
    Bednarek R, Boncela J, Smolarczyk K et al (2008) Ku80 as a novel receptor for thymosin beta4 that mediates its intracellular activity different from G-actin sequestering. J Biol Chem 283:1534–1544PubMedCrossRefGoogle Scholar
  25. 25.
    Gao S, Nielsen BS, Krogdahl A et al (2010) Epigenetic alterations of the SERPINE1 gene in oral squamous cell carcinomas and normal oral mucosa. Genes Chromosomes Cancer 49:526–538PubMedGoogle Scholar
  26. 26.
    Daneri-Navarro A, Macias-Lopez G, Oceguera-Villanueva A et al (1998) Urokinase-type plasminogen activator and plasminogen activator inhibitors (PAI-1 and PAI-2) in extracts of invasive cervical carcinoma and precursor lesions. Eur J Cancer 34:566–569PubMedCrossRefGoogle Scholar
  27. 27.
    Horn LC, Pippig S, Raptis G et al (2002) Clinical relevance of urokinase-type plasminogen activator and its inhibitor type 1 (PAI-1) in squamous cell carcinoma of the uterine cervix. Aust N Z J Obstet Gynaecol 42:383–386PubMedCrossRefGoogle Scholar
  28. 28.
    Riethdorf L, Riethdorf S, Petersen S et al (1999)Urokinase gene expression indicates early invasive growth in squamous cell lesions of the uterine cervix. J Pathol 189:245–250PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi H, Fujishiro S, Terao T (1994) Impact of urokinase-type plasminogen activator and its inhibitor type 1 on prognosis in cervical cancer of the uterus. Cancer Res 54:6539–6548PubMedGoogle Scholar
  30. 30.
    Clavo B, Perez JL, Lopez L et al (2003) Influence of haemoglobin concentration and peripheral muscle pO2 on tumour oxygenation in advanced head and neck tumours. Radiother Oncol 66:71–74PubMedCrossRefGoogle Scholar
  31. 31.
    Lara PC, Lloret M, Clavo B et al (2008) Hypoxia downregulates Ku70/80 expression in cervical carcinoma tumors. Radiother Oncol 89:222–226PubMedCrossRefGoogle Scholar
  32. 32.
    Lara PC, Lloret M, Clavo B et al (2009) Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. Radiat Oncol 4:29PubMedCrossRefGoogle Scholar
  33. 33.
    Hazelbag S, Kenter GG, Gorter A, Fleuren GJ (2004) Prognostic relevance of TGF-beta1 and PAI-1 in cervical cancer. Int J Cancer 112:1020–1028PubMedCrossRefGoogle Scholar
  34. 34.
    Niemantsverdriet M, Jong E de, Langendijk JA et al (2010) Synergistic induction of profibrotic PAI-1 by TGF-beta and radiation depends on p53. Radiother Oncol 97:33–35PubMedCrossRefGoogle Scholar
  35. 35.
    Bayer C, Schilling D, Hoetzel J et al (2008) PAI-1 levels predict response to fractionated irradiation in 10 human squamous cell carcinoma lines of the head and neck. Radiother Oncol 86:361–368PubMedCrossRefGoogle Scholar
  36. 36.
    Hageman J, Eggen BJ, Rozema T et al (2005) Radiation and transforming growth factor-beta cooperate in transcriptional activation of the profibrotic plasminogen activator inhibitor-1 gene. Clin Cancer Res 11:5956–5964PubMedCrossRefGoogle Scholar
  37. 37.
    Saito S, Yamaguchi H, Higashimoto Y et al (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544PubMedCrossRefGoogle Scholar
  38. 38.
    Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412PubMedCrossRefGoogle Scholar
  39. 39.
    Niemantsverdriet M, Goethem MJ van, Bron R et al (2012) High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals. Int J Radiat Oncol Biol Phys 83:1291–1297PubMedGoogle Scholar
  40. 40.
    Kornmann M, Tangvoranuntakul P, Korc M (1999) TGF-beta-1 up-regulates cyclin D1 expression in COLO-357 cells, whereas suppression of cyclin D1 levels is associated with down-regulation of the type I TGF-beta receptor. Int J Cancer 83:247–254PubMedCrossRefGoogle Scholar
  41. 41.
    Lloret M, Lara PC, Bordon E et al (2009) Major vault protein may affect nonhomologous end-joining repair and apoptosis through Ku70/80 and bax downregulation in cervical carcinoma tumors. Int J Radiat Oncol Biol Phys 73:976–979PubMedCrossRefGoogle Scholar
  42. 42.
    Amsel AD, Rathaus M, Kronman N, Cohen HY (2008) Regulation of the proapoptotic factor Bax by Ku70-dependent deubiquitylation. Proc Natl Acad Sci U S A 105:5117–5122PubMedCrossRefGoogle Scholar
  43. 43.
    Soeda S, Koyanagi S, Kuramoto Y et al (2008) Anti-apoptotic roles of plasminogen activator inhibitor-1 as a neurotrophic factor in the central nervous system. Thromb Haemost 100:1014–1020PubMedGoogle Scholar
  44. 44.
    Hockel M, Knoop C, Schlenger K et al (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50PubMedCrossRefGoogle Scholar
  45. 45.
    Schilling D, Bayer C, Emmerich K et al (2012) Basal HIF-1alpha expression levels are not predictive for radiosensitivity of human cancer cell lines. Strahlenther Onkol 188:353–358PubMedCrossRefGoogle Scholar
  46. 46.
    Zips D, Boke S, Kroeber T et al (2011) Prognostic value of radiobiological hypoxia during fractionated irradiation for local tumor control. Strahlenther Onkol 187:306–310PubMedCrossRefGoogle Scholar
  47. 47.
    Maftei CA, Bayer C, Shi K et al (2011) Quantitative assessment of hypoxia subtypes in microcirculatory supply units of malignant tumors using (immuno-) fluorescence techniques. Strahlenther Onkol 187:260–266PubMedCrossRefGoogle Scholar
  48. 48.
    Fyles AW, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156PubMedCrossRefGoogle Scholar
  49. 49.
    Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  50. 50.
    Mayer A, Hockel M, Wree A et al (2008) Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res 68:4719–4726PubMedCrossRefGoogle Scholar
  51. 51.
    Mayer A, Hockel M, Vaupel P (2006) Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: reality or wishful thinking? Strahlenther Onkol 182:501–510PubMedCrossRefGoogle Scholar
  52. 52.
    Mayer A, Hockel M, Vaupel P (2008) Endogenous hypoxia markers: case not proven! Adv Exp Med Biol 614:127–136PubMedCrossRefGoogle Scholar
  53. 53.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239PubMedCrossRefGoogle Scholar
  54. 54.
    Kietzmann T, Roth U, Jungermann K (1999) Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 94:4177–4185PubMedGoogle Scholar
  55. 55.
    Pinsky DJ, Liao H, Lawson CA et al (1998) Coordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition. J Clin Invest 102:919–928PubMedCrossRefGoogle Scholar
  56. 56.
    Ueno M, Maeno T, Nomura M et al (2011) Hypoxia-inducible factor-1alpha mediates TGF-beta-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 300:L740–L752PubMedCrossRefGoogle Scholar
  57. 57.
    Fink T, Kazlauskas A, Poellinger L et al (2002) Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 99:2077–2083PubMedCrossRefGoogle Scholar
  58. 58.
    Fitzpatrick TE, Graham CH (1998) Stimulation of plasminogen activator inhibitor-1 expression in immortalized human trophoblast cells cultured under low levels of oxygen. Exp Cell Res 245:155–162PubMedCrossRefGoogle Scholar
  59. 59.
    Kimura D, Imaizumi T, Tamo W et al (2002) Hypoxia enhances the expression of plasminogen activator inhibitor-1 in human lung cancer cells, EBC-1. Tohoku J Exp Med 196:259–267PubMedCrossRefGoogle Scholar
  60. 60.
    Li X, Kimura H, Hirota K et al (2005) Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney Int 68:569–583PubMedCrossRefGoogle Scholar
  61. 61.
    Sprague LD, Mengele K, Schilling D et al (2006) Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells. Oncology 71:282–291PubMedCrossRefGoogle Scholar
  62. 62.
    Nieder C, Haukland E, Pawinski A, Dalhaug A (2010) Validation of new prognostic and predictive scores by sequential testing approach. Strahlenther Onkol 186:169–173PubMedCrossRefGoogle Scholar
  63. 63.
    Staab A, Fleischer M, Loeffler J et al (2011) Small interfering RNA targeting HIF-1alpha reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro. Strahlenther Onkol 187:252–259PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • P.C. Lara
    • 1
  • M. Lloret
    • 1
  • A. Valenciano
    • 1
  • B. Clavo
    • 1
  • B. Pinar
    • 1
  • A. Rey
    • 1
  • L. A. Henríquez-Hernández
    • 1
    Email author
  1. 1.Hospital Universitario de Gran Canaria Dr. NegrínLas Palmas de Gran Canaria, Las PalmasSpain

Personalised recommendations