Strahlentherapie und Onkologie

, Volume 188, Supplement 3, pp 312–315

Die Rolle der Strahlentherapie bei der Induktion von Antitumor-Immunantworten


The role of radiotherapy in the induction of antitumor immune responses


  1. 1.
    Apetoh L, Ghiringhelli F, Tesniere A et al (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59PubMedCrossRefGoogle Scholar
  2. 2.
    Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388PubMedCrossRefGoogle Scholar
  3. 3.
    Finkelstein SE, Iclozan C, Bui MM et al (2012) Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys 82:924–932PubMedCrossRefGoogle Scholar
  4. 4.
    Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726PubMedCrossRefGoogle Scholar
  5. 5.
    Frey B, Rubner Y, Wunderlich R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation – implications for cancer therapies. Curr Med Chem 12:1751–1764CrossRefGoogle Scholar
  6. 6.
    Gehrmann M, Radons J, Molls M et al (2008) The therapeutic implications of clinically applied modifiers of heat shock protein 70 (Hsp70) expression by tumor cells. Cell Stress Chaperones 13:1–10PubMedCrossRefGoogle Scholar
  7. 7.
    He J, Yin Y, Luster TA et al (2009) Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 15:6871–6880PubMedCrossRefGoogle Scholar
  8. 8.
    Krause SW, Gastpar R, Andreesen R et al (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 10:3699–3707PubMedCrossRefGoogle Scholar
  9. 9.
    Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595PubMedCrossRefGoogle Scholar
  10. 10.
    Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18:576–585PubMedCrossRefGoogle Scholar
  11. 11.
    Multhoff G, Botzler C, Wiesnet M et al (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279PubMedCrossRefGoogle Scholar
  12. 12.
    Multhoff G, Pfister K, Botzler C et al (2000) Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer 88:791–797PubMedCrossRefGoogle Scholar
  13. 13.
    Multhoff G, Pfister K, Gehrmann M et al (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344PubMedCrossRefGoogle Scholar
  14. 14.
    Niedermann G (2002) Immunological functions of the proteasome. Curr Top Microbiol Immunol 268:91–136PubMedCrossRefGoogle Scholar
  15. 15.
    Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol 8:577–585PubMedCrossRefGoogle Scholar
  17. 17.
    Saveanu L, Carroll O, Weimershaus M et al (2009) IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science 325:213–217PubMedCrossRefGoogle Scholar
  18. 18.
    Schildkopf P, Frey B, Ott OJ et al (2011) Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 101:109–115PubMedCrossRefGoogle Scholar
  19. 19.
    Shiraishi K, Ishiwata Y, Nakagawa K et al (2008) Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin Cancer Res 14:1159–1166PubMedCrossRefGoogle Scholar
  20. 20.
    Stangl S, Gehrmann M, Riegger J et al (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci USA 108:733–738PubMedCrossRefGoogle Scholar
  21. 21.
    Stangl S, Wortmann A, Guertler U et al (2006) Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. J Immunol 176:6270–6276PubMedGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  1. 1.Klinik für Strahlentherapie und Radiologische Onkologie, Experimentelle Radioonkologie, Klinikum rechts der Isar TU MünchenMünchenDeutschland
  2. 2.Klinische Kooperationsgruppe:“Angeborene Immunantwort in der Tumorbiologie“Helmholtz-Zentrum München (HMGU)MünchenDeutschland
  3. 3.Strahlenklinik/Radioonkologie, Strahlen-ImmunbiologieUniversiätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenDeutschland
  4. 4.Klinik für Strahlenheilkunde, Sektion für Klinische und Experimentelle StrahlenbiologieUniversitätsklinikum FreiburgFreiburgDeutschland

Personalised recommendations