Advertisement

Strahlentherapie und Onkologie

, Volume 188, Supplement 2, pp 198–211 | Cite as

Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia

Quality management in regional deep hyperthermia
  • G. Bruggmoser
  • S. Bauchowitz
  • R. Canters
  • H. Crezee
  • M. Ehmann
  • J. Gellermann
  • U. Lamprecht
  • N. Lomax
  • M.B. Messmer
  • O. Ott
  • S. Abdel-Rahman
  • M. Schmidt
  • R. Sauer
  • A. Thomsen
  • R. Wessalowski
  • G. van Rhoon
Guideline

Abstract

Objectives

These guidelines contain recommendations for the implementation of quality-assured hyperthermia treatments. The objective is to guarantee an internationally comparable and easily understandable method for hyperthermia treatment and for the subsequent scientific analysis of the treatment results. The guidelines describe “regional deep hyperthermia” (RHT) and MR-controlled “partial body hyperthermia” (PBH) of children, adolescents and adult patients. Hyperthermia in terms of these guidelines is defined as a treatment combining chemotherapy and/or radiation therapy.

Methods

These guidelines are based on practical experience from several hyperthermia centres in Europe. Our collaborative effort has ensured coordinated standards and quality control procedures in regional deep and partial body hyperthermia. The guidelines were developed by the Atzelsberg Research Group of the IAH (http://www.hyperthermie.org) of the German Cancer Society (“Deutsche Krebsgesellschaft”) to specifically ensure that the multi-institutional studies initiated by the Atzelsberg Research Group are executed following a single, uniform level of quality.

Results

The guidelines contain recommendations for procedural methods for treatment using hyperthermia. They commence with diagnosis, which is followed by preparation and treatment and concludes with standardised analysis for the reporting of results.

Keywords

Hyperthermia Radiation Chemotherapy Hyperthermia side effects 

Abbreviations

CEM43T90

Equivalent minutes at 43 °C

CR

Complete tumour response

CT

Computer tomography

CTCAE v4.03

Common toxicity criteria adverse events

DEGRO

Deutsche Gesellschaft für Radioonkologie

DFS

Disease-free survival

E-field

Electric field

ESHO

European Society of Hyperthermic Oncology

FE

Finite element

Gy

Gray

http

Hypertext transfer protocol

HTP

Computer hyperthermia planning

IAH

Interdisciplinary working group

LEFS

Local event-free survival

LP

Local tumour progression

MPG

German Medizinprodukte Gesetz

MR

Magnetic resonance

MRI

Magnetic resonance imaging

MRT

Magnetic resonance tomography

MTRA

Technician in radiology (“Medizinisch Technischer Radiologie Assistant”)

OS

Overall survival

P

Power

PBH

Partial body hyperthermia

PET

Positron emission tomography

PRFS

Proton resonance frequency

PTV

Planning target volume

QMHT

Quality management in hyperthermia (defined in this guideline)

RECIST

Response evaluation criteria in solid tumors

RHT

Regional hyperthermia

RHyThM

Rotterdam Hyperthermia Thermal Modulator

RTOG

Radiation Therapy Oncology Group

SAR

Specific absorption rate

TTP

Time to progression

US

Ultrasound

Leitlinie für die klinische Applikation, die Dokumentation und die Analyse klinischer Studien bei der regionalen Tiefenhyperthermie

Qualitätsmanagement bei der regionalen Tiefenhyperthermie

Zusammenfassung

Hintergrund

Diese Leitlinie enthält Empfehlungen zur Durchführung von qualitätsgesicherten Hyperthermiebehandlungen. Ziel ist, ein vergleichbares und nachvollziehbares Vorgehen bei der Behandlung und der wissenschaftlichen Auswertung der Hyperthermie zu gewährleisten. Die Leitlinie beschreibt die „Regionale Tiefenhyperthermie“ (RHT) und die „MR-kontrollierte Teilkörperhyperthermie“ (PBH) von Kindern, Jugendlichen und erwachsenen Patienten. Die Hyperthermie im Sinne dieser Leitlinie wird als Kombinationsbehandlung mit einer Chemo- und/oder Strahlentherapie durchgeführt.

Methodik

Die vorgestellte Leitlinie basiert auf praktischen Erfahrungen von mehreren Hyperthermiezentren. Dieses Vorgehens erlaubt gemeinsam abgestimmte Standards in der Anwendung und der Qualitätskontrolle in der Hyperthermie für Studien, die im Rahmen des Atzelsberger Arbeitskreises in der Interdisziplinären Arbeitsgruppe Hyperthermie (http://www.hyperthermie.org) in der Deutschen Krebsgesellschaft und dem Technischen Komitee der „European Society for Hyperthermic Oncology“ (ESHO) entwickelt wurden, um sicher zu stellen, dass multizentrische Studien, die vom Atzelsberger Arbeitskreis entwickelt wurden, nach einem standardisierten, einheitlichen Qualitätsmaßstab durchgeführt werden.

Ergebnisse

Diese Leitlinie enthält Empfehlungen für das Vorgehen bei Hyperthermiebehandlungen von der Indikationsstellung, der Vorbereitung, der Durchführung bis zur standardisierten Auswertung.

Die deutschsprachige Version des Beitrags ist auf SpringerLink unter „Supplemental“ zu finden.

Schlüsselwörter

Hyperthermie Bestrahlung Chemotherapie Hyperthermienebenwirkungen 

Notes

Acknowledgements

The authors thank the members of the Atzelsberg Clinical Circle of the IAH for their constructive comments and their continuous stimulation to prepare the quality assurance document for regional deep hyperthermia.

Conflict of interest

On behalf of all authors, the corresponding author states the following: the authors have no financial interest in any company selling hyperthermia treatment and planning equipment. The opinion of the authors is solely based upon the available scientific knowledge and their personal experience in the clinical application of hyperthermia.

Supplementary material

66_2012_176_MO1_ESM.pdf (1.2 mb)
Deutsche Version "Leitlinie für die klinische Applikation, die Dokumentation und die Analyse klinischer Studien bei der regionalen Tiefenhyperthermie" (PDF 1,9 MB)

References

  1. 1.
    Balasubramaniam TA, Bowman HF (1977) Thermal conductivity and thermal diffusivity of biomaterials: a simultaneous measurement technique. J Biomech Eng 99:148–154CrossRefGoogle Scholar
  2. 2.
    Bruggmoser G, Bauchowitz S, Canters R et al (2011) Quality Assurance for Clinical Studies in Regional Deep Hyperthermia. Strahlenther Onkol 187(10):605–609PubMedCrossRefGoogle Scholar
  3. 3.
    Bruijne M de, Holt B van der, Rhoon GC van, Zee J van der (2010) Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis. Strahlenther Onkol 186(8):436–443PubMedCrossRefGoogle Scholar
  4. 4.
    Canters RA, Franckena M, Paulides MM, Rhoon GC van (2009) Patient positioning in deep hyperthermia: influences of inaccuracies, signal correction possibilities and optimization potential. Phys Med Biol 54:3923–3936PubMedCrossRefGoogle Scholar
  5. 5.
    Canters RA, Wust P, Bakker JF, Rhoon GC van (2009) A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia 25:593–608PubMedCrossRefGoogle Scholar
  6. 6.
    Chato JC (1968) A method for the measurement of the thermal properties of biological materials. In: Chato JC (ed) Thermal Problems in Biotechnology, ASME symposium series. American Society of Mechanical Engineers, New YorkGoogle Scholar
  7. 7.
    Chato JC (1990) Fundamentals of bioheat transfer. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, New York, p 51Google Scholar
  8. 8.
    Cooper TE, Trezek DJ (1971) Correlation of thermal properties of some human tissue with water content. Aerospace Med 42:24–27PubMedGoogle Scholar
  9. 9.
    Craciunescu OI, Stauffer PR, Soher BJ et al (2009) Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Med Phys 36:4848–4858PubMedCrossRefGoogle Scholar
  10. 10.
    Crezee J, Haaren PM van, Westendorp H et al (2009) Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Int J Hyperthermia 25(7):581–592PubMedCrossRefGoogle Scholar
  11. 11.
    Drane CR (1981) The thermal conductivity of the skin of crocodilians. Comp Biochem Physiol 68A:107–110CrossRefGoogle Scholar
  12. 12.
    Dumas A, Barozzi GS (1984) Laminar heat transfer to blood flowing in a circular duct. Int J Heat Mass Trans 27:391–398CrossRefGoogle Scholar
  13. 13.
    Eckert F, Fehm T, Bamberg M, Müller AC (2010) Small cell carcinoma of vulva: curative multimodal treatment in face of resistance to initial standard chemotherapy. Strahlenther Onkol 86(9):521–524CrossRefGoogle Scholar
  14. 14.
    Fatehi D, Bruijne M de, Zee J van der, Rhoon GC van (2006) RHyThM, a tool for analysis of PDOS formatted hyperthermia treatment data generated by the BSD2000/3D system. Int J Hyperthermia 22:173–184PubMedCrossRefGoogle Scholar
  15. 15.
    Fatehi D, Zee J van der, Notenboom A, Rhoon GC van (2007) Comparison of intratumor and intraluminal temperatures during locoregional deep hyperthermia of pelvic tumors. Strahlenther Onkol 183(9):479–486PubMedCrossRefGoogle Scholar
  16. 16.
    Franckena M, Fatehi D, Bruijne M de et al (2009) Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 45(11):1969–1978PubMedCrossRefGoogle Scholar
  17. 17.
    Gabriel C, Gabriel S, Courthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2250PubMedCrossRefGoogle Scholar
  18. 18.
    Gabriel S, Lau R-W, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269PubMedCrossRefGoogle Scholar
  19. 19.
    Gabriel S, Lau R-W, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2280PubMedCrossRefGoogle Scholar
  20. 20.
    Gellermann J, Wlodarczyk W, Feussner A et al (2005) Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia 21:497–513PubMedCrossRefGoogle Scholar
  21. 21.
    Gellermann J, Wlodarczyk W, Hildebrandt B et al (2005) Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res 65:5872–5880PubMedCrossRefGoogle Scholar
  22. 22.
    Gellermann J, Hildebrandt B, Issels R et al (2006) Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer 107:1373–1382PubMedCrossRefGoogle Scholar
  23. 23.
    Grayson J (1952) Internal calorimetry in the determination of thermal conductivity and blood flow. J Physiol 118:54–72PubMedGoogle Scholar
  24. 24.
    Haveman J, Smals OA, Rodermond HM (2003) Effects of hyperthermia on the rat bladder: a pre-clinical study on thermometry and functional damage after treatment. Int J Hyperthermia 19(1):45–57PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffmann K-T, Rau B, Wust P et al (2002) Restaging of locally advanced carcinoma of the rectum with MR imaging after preoperative radio-chemotherapy plus regional hyperthermia. Strahlenther Onkol 178:386–392PubMedCrossRefGoogle Scholar
  26. 26.
    Holmes KR, Ryan W, Chen WW (1983) Thermal conductivity and H2O content in rabbit kidney cortex and medulla. J Therm Biol 8:311–313CrossRefGoogle Scholar
  27. 27.
    Holmes KR, Chen MM (1979) Local thermal conductivity of Para-7 fibrosarcoma in hamster. Advances in Bioengineering, New York: ASME, pp 147–149Google Scholar
  28. 28.
    Holmes KR, Adams T (1975) Epidermal thermal conductivity and stratum corneum hydration in cat footpad. Am J Physiol 228:1903–1908PubMedGoogle Scholar
  29. 29.
    Hynynen K, McDannold N (2004) MRI guided and monitored focused ultrasound thermal ablation methods: a review of progress. Int J Hyperthermia 20:725–737PubMedCrossRefGoogle Scholar
  30. 30.
    Hua Y, Ma S, Fu Z et al (2011) Intracavity hyperthermia in nasopharyngeal cancer: a phase III clinical study. Int J Hyperthermia 27:180–186PubMedCrossRefGoogle Scholar
  31. 31.
    Issels RD (2008) Hyperthermia adds to chemotherapy. Eur J Cancer 44(17):2546–2554PubMedCrossRefGoogle Scholar
  32. 32.
    Issels RD, Lindner LH, Verweij J et al (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11(6):561–570PubMedCrossRefGoogle Scholar
  33. 33.
    Kok HP, Haaren PM van, Kamer JB van de et al (2005) High resolution temperature based optimisation for hyperthermia treatment planning. Phys Med Biol 50(13):3127–3141PubMedCrossRefGoogle Scholar
  34. 34.
    Konstanczak R, Wust P, Sander B et al (1997) Thermometrie durch Messung der chemischen Verschiebung eines Lanthanidenkomplexes. Strahlenther Onkol 173(2):106–116PubMedCrossRefGoogle Scholar
  35. 35.
    Kotte A, Leeuwen G van, Bree J de et al (1996) A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol 41(5):865–884PubMedCrossRefGoogle Scholar
  36. 36.
    Kuroda K (2005) Non-invasive MR thermography using the water proton chemical shift. Int J Hyperthermia 21:547–560PubMedCrossRefGoogle Scholar
  37. 37.
    Kvadsheim PH, Folkow LP, Blix AS (1996) Thermal conductivity of Minke whale blubber. J Therm Biol 21:123–128CrossRefGoogle Scholar
  38. 38.
    Kvadsheim PH, Folkow LP, Blix AS (1994) A new device for measurement of the thermal conductivity of fur and blubber. J Therm Biol 19:431–435CrossRefGoogle Scholar
  39. 39.
    Lagendijk JJW, Rhoon GC van, Hornsleth SN et al (1998) ESHO quality assurance guidelines for regional hyperthermia. Int J Hyperthermia 14:125–133PubMedCrossRefGoogle Scholar
  40. 40.
    Lee ER, Sullivan DM, Kapp DS (1992) Potential hazards of radiative electromagnetic hyperthermia in the presence of multiple metallic surgical clips. Int J Hyperthermia 8:809–817PubMedCrossRefGoogle Scholar
  41. 41.
    De Leeuw AAC, Crezee J, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9(5):685–697CrossRefGoogle Scholar
  42. 42.
    Lutgens L, Zee J van der, Pijls-Johannesma M et al (2010) Combined use of hyperthermia and radiation therapy for treating locally advanced cervical carcinoma. Cochrane Gynaecological Cancer Group (ed) The cochrane collaboration, Issue 1. Wiley, http://www.thecochranelibrary.comGoogle Scholar
  43. 43.
    Mantel F, Frey B, Haslinger S et al (2010) Combination of ionising irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells. Strahlenther Onkol 186:587–599PubMedCrossRefGoogle Scholar
  44. 44.
    Milani V, Pazos M, Issels RD et al (2008) Radiochemotherapy in combination with regional hyperthermia in preirradiated patients with recurrent rectal cancer. Strahlenther Onkol 184:163–168PubMedCrossRefGoogle Scholar
  45. 45.
    Ott OJ, Issels RD, Wessalowski R (2010) Hyperthermia in oncology—principles and therapeutic outlook. Uni-Med Verlag AG, BremenGoogle Scholar
  46. 46.
    Peller M, Muacevic A, Reinl H et al (2004) MRI-assisted thermometry for regional hyperthermia and interstitial laser thermotherapy. Radiologe 44:310–319PubMedCrossRefGoogle Scholar
  47. 47.
    De Poorter J, Wagter CD, De Deene Y et al (1995) Noninvasive MRI thermometry with the proton resonance frequency _PRF_method: in vivo results in human muscle. Magn Reson Med 33:74–81CrossRefGoogle Scholar
  48. 48.
    Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122PubMedGoogle Scholar
  49. 49.
    Quesson B, Zwart JA de, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533PubMedCrossRefGoogle Scholar
  50. 50.
    Rau B, Wust P, Gellermann J et al (1998) Phase-II-Studie zur pr operativen Radio-Chemo-Thermo-Therapie beim lokal fortgeschrittenen Rektum-Karzinom. Strahlenther Onkol 174(11):556–565PubMedCrossRefGoogle Scholar
  51. 51.
    Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800PubMedCrossRefGoogle Scholar
  52. 52.
    De Senneville BD, Quesson B, Moonen TCW (2005) Magnetic resonance temperature imaging. Int J Hyperthermia 21:515–531CrossRefGoogle Scholar
  53. 53.
    Valvano JW, Cochran JR, Diller KR (1985) Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int J Thermophys 6:301–311CrossRefGoogle Scholar
  54. 54.
    Valvano JW, Chitsabesan B (1987) Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque. Lasers Life Sci 1:219–229Google Scholar
  55. 55.
    Valvano JW, Allen JT, Bowman HF (1981) The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue. ASME 81-WA/HT-21Google Scholar
  56. 56.
    Wal E van der, Frankena M, Wielheesen DHM et al (2008) Steering in locoregional deep hyperthermia: evaluation of common practice with 3D-planning. Int J Hyperthermia 24:682–693PubMedCrossRefGoogle Scholar
  57. 57.
    Tilly W, Gellermann J, Graf R et al (2005) Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3 pN0 M0. Strahlenther Onkol 181:35–41PubMedCrossRefGoogle Scholar
  58. 58.
    Wust P, Gellermann J, Harder C (1998) Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int J Radiat Oncol Biol Phys 41:1129–1137PubMedCrossRefGoogle Scholar
  59. 59.
    Yarmolenko PS, Moon EJ, Landon C et al (2011) Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27(4):320–343PubMedCrossRefGoogle Scholar
  60. 60.
    Van der Zee J, Gonzalez Gonzalez D, Van Rhoon GC et al (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355(9210):1119–1125CrossRefGoogle Scholar
  61. 61.
    Van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184CrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • G. Bruggmoser
    • 1
  • S. Bauchowitz
    • 2
  • R. Canters
    • 8
  • H. Crezee
    • 3
  • M. Ehmann
    • 4
  • J. Gellermann
    • 5
  • U. Lamprecht
    • 6
  • N. Lomax
    • 7
  • M.B. Messmer
    • 1
  • O. Ott
    • 2
  • S. Abdel-Rahman
    • 8
  • M. Schmidt
    • 2
  • R. Sauer
    • 2
  • A. Thomsen
    • 1
  • R. Wessalowski
    • 9
  • G. van Rhoon
    • 10
  1. 1.Radiotherapy DepartmentUniversity Hospital of FreiburgFreiburgGermany
  2. 2.Radiotherapy ClinicUniversity Hospital ErlangenErlangenGermany
  3. 3.Academic Medical Centre (AMC)AmsterdamThe Netherlands
  4. 4.Radiation Oncology DepartmentUniversity Medical Centre MannheimMannheimGermany
  5. 5.Formerly: Radiotherapy ClinicCharité UniversityBerlinGermany
  6. 6.Radiation OncologyUniversity Hospital of TübingenTübingenGermany
  7. 7.Radiation Oncology ClinicCantonal Hospital AarauAarauSwitzerland
  8. 8.Medical Clinic IIIUniversity Clinic MunichMunichGermany
  9. 9.Clinic of Pediatric Hematology, Oncology and Clinical ImmunologyUniversity Hospital DüsseldorfDüsseldorfGermany
  10. 10.Erasmus Medical Centre, Daniel den Hoed Cancer CentreRotterdamThe Netherlands

Personalised recommendations