Advertisement

Strahlentherapie und Onkologie

, Volume 188, Issue 7, pp 576–581 | Cite as

Intensity-modulated arc therapy with cisplatin as neo-adjuvant treatment for primary irresectable cervical cancer

Toxicity, tumour response and outcome
  • K. Vandecasteele
  • A. Makar
  • R. Van den Broecke
  • L. Delrue
  • H. Denys
  • K. Lambein
  • B. Lambert
  • M. van Eijkeren
  • P. Tummers
  • G. De Meerleer
Original article

Abstract

Purpose

The goal of this work was to evaluate the feasibility and outcome of intensity-modulated arc therapy ± cisplatin (IMAT ± C) followed by hysterectomy for locally advanced cervical cancer.

Patients and methods

A total of 30 patients were included in the study. The primary tumour and PET-positive lymph node(s) received a simultaneous integrated boost. Four weeks after IMAT ± C treatment, response was evaluated. Resection consisted of hysterectomy with or without lymphadenectomy. Tumour response, acute and late radiation toxicity, postoperative morbidity and outcome were evaluated.

Results

All hysterectomy specimens were macroscopically tumour-free with negative resection margins; pathological complete response was 40%. In 2 patients, one resected lymph node was positive. There was no excess in postoperative morbidity. Apart from two grade 3 hematologic toxicities, no grade 3 or 4 acute radiation toxicity was observed. No grade 3, 1 grade 4 (4%) intestinal, and 4 grade 3 (14%) urinary late toxicities were observed. The 2-year local and regional control rates were 96% and 100%, respectively. The 2-year distant control rate was 92%. Actuarial 2-year progression free survival rate was 89%. Actuarial 1- and 2-year overall survival rates were 96% and 91%, while 3-year overall survival was 84%.

Conclusion

Surgery after IMAT ± C is feasible with low postoperative morbidity and radiation toxicity. Local, regional, distant control and survival rates are promising.

Keywords

Radiotherapy Uterine cervical neoplasms Hysterectomy Treatment outcome Acute toxicity 

Intensitätsmodulierte Rotationstherapie mit Cisplatin als neoadjuvante Behandlung beim primären, inoperablen Zervixkarzinom

Toxizität, Tumoransprechen und Behandlungsergebnis

Zusammenfassung

Ziel

Endpunktergebnisse und Machbarkeitsbewertung einer intensitätsmodulierten Rotationstherapie mit oder ohne Cisplatin (IMAT ± C) vor der operativen Entfernung der Gebärmutter beim lokal fortgeschrittenen Zervixkarzinom.

Patienten und Methodik

Es nahmen 30 Patienten an der Studie teil (Tab. 1). Der Primärtumor und die PET-positiven Lymphknoten erhielten simultan einen integrierten Boost. Vier Wochen nach der kombinierten IMAT ± C-Behandlung wurde das Ansprechen bewertet. Die Operation bestand aus Gebärmutterentfernung mit oder ohne Lymphknotenentfernung. Bewertet wurden das Tumoransprechen, die akute und späte Bestrahlungstoxizität, die postoperative Morbidität sowie onkologische Ergebnisse.

Ergebnisse

Alle Hysterektomieproben zeigten sich makroskopisch negativ mit negativen Resektionsrändern; das pathologische Gesamtansprechen betrug 40% (Tab. 2). Bei 2 Patienten wurde ein resezierter Lymphknoten als positiv befunden. Es wurde keine übermäßige postoperative Morbidität festgestellt (Tab. 3). Es trat keine Grad-3/4-Akuttoxizität auf, abgesehen von 2 hämatologischen Grad-3-Toxizitäten. Es wurde eine intestinale Grad-4-Spättoxizität (4%) festgestellt, jedoch keine Grad-3-Spättoxizität. Urogenitale Grad-3-Spättoxizitäten entwickelten 14% der Patientinnen (n = 4; Tab. 4). Die lokalen und regionären 2-Jahres-Kontrollraten waren mit 96% bzw. 100% hoch. Die 2-Jahres-Fernkontrollrate betrug 92%. Das statistische krankheitsfreie Überleben nach 2 Jahren betrug 89%. Die statistischen 1- und 2-Jahres-Gesamtüberlebensraten betrugen 96% bzw. 91%, die 3-Jahres-Gesamtüberlebensrate 84%.

Schlussfolgerung

Eine Operation nach IMAT ± C ist durchführbar. Es ergibt sich eine niedrige postoperative Morbidität und Bestrahlungstoxizität. Dabei sind Lokal-, Regional- und Fernkontrolle sowie die Überlebensrate vielversprechend.

Schlüsselwörter

Strahlentherapie Uterine Zervixneoplasien Hysterektomie Behandlungserfolg Akute Toxizität 

Notes

Acknowledgments

This work was supported by a grant of the “Centrum voor Gezwelziekten – University Hospital Ghent”.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Brocker K, Alt C, Eichbaum M et al (2011) Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Strahlenther Onkol 187:611–618PubMedCrossRefGoogle Scholar
  2. 2.
    Carcopino X, Houvenaeghel G, Buttarelli M et al (2008) Equivalent survival in patients with advanced stage IB-II and III-IVA cervical cancer treated by adjuvant surgery following chemoradiotherapy. Eur J Surg Oncol 34:569–575PubMedCrossRefGoogle Scholar
  3. 3.
    Chassagne D, Sismondi P, Horiot JC et al (1993) A glossary for reporting complications of treatment in gynecological cancers. Radiother Oncol 26:195–202PubMedCrossRefGoogle Scholar
  4. 4.
    Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346PubMedCrossRefGoogle Scholar
  5. 5.
    Cozzi L, Dinshaw KA, Shrivastava SK et al (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89:180–191PubMedCrossRefGoogle Scholar
  6. 6.
    De Meerleer G, Vakaet L, Meersschout S et al (2004) Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients. Int J Radiat Oncol Biol Phys 60:777–787CrossRefGoogle Scholar
  7. 7.
    Duthoy W, De Gersem W, Vergote K et al (2004) Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 60:794–806PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrandina G, Margariti PA, Smaniotto D et al (2010) Long-term analysis of clinical outcome and complications in locally advanced cervical cancer patients administered concomitant chemoradiation followed by radical surgery. Gynecol Oncol 119:404–410PubMedCrossRefGoogle Scholar
  9. 9.
    Fonteyne V, De Neve W, Villeirs G et al (2007) Late radiotherapy-induced lower intestinal toxicity (RILIT) of intensity-modulated radiotherapy for prostate cancer: the need for adapting toxicity scales and the appearance of the sigmoid colon as co-responsible organ for lower intestinal toxicity. Radiother Oncol 84:156–163PubMedCrossRefGoogle Scholar
  10. 10.
    Green J, Kirwan J, Tierney J et al (2005) Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev: CD002225Google Scholar
  11. 11.
    Guerrero M, Li XA, Ma L et al (2005) Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: radiobiological and dosimetric considerations. Int J Radiat Oncol Biol Phys 62:933–939PubMedCrossRefGoogle Scholar
  12. 12.
    Hasselle MD, Rose BS, Kochanski JD et al (2011) Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 80:1436–1445PubMedCrossRefGoogle Scholar
  13. 13.
    Keys HM, Bundy BN, Stehman FB et al (2003) Radiation therapy with and without extrafascial hysterectomy for bulky stage IB cervical carcinoma: a randomized trial of the Gynecologic Oncology Group. Gynecol Oncol 89:343–353PubMedCrossRefGoogle Scholar
  14. 14.
    Kirwan JM, Symonds P, Green JA et al (2003) A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol 68:217–226PubMedCrossRefGoogle Scholar
  15. 15.
    Lammering G, De Ruysscher D, Baardwijk A van et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186:471–481PubMedCrossRefGoogle Scholar
  16. 16.
    Loizzi V, Cormio G, Loverro G et al (2003) Chemoradiation: a new approach for the treatment of cervical cancer. Int J Gynecol Cancer 13:580–586PubMedCrossRefGoogle Scholar
  17. 17.
    Lukka H, Hirte H, Fyles A et al (2002) Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer—a meta-analysis. Clin Oncol (R Coll Radiol) 14:203–212Google Scholar
  18. 18.
    Marnitz S, Stromberger C, Kawgan-Kagan M et al (2010) Helical tomotherapy in cervical cancer patients: simultaneous integrated boost concept: technique and acute toxicity. Strahlenther Onkol 186:572–579PubMedCrossRefGoogle Scholar
  19. 19.
    Morice P, Uzan C, Zafrani Y et al (2007) The role of surgery after chemoradiation therapy and brachytherapy for stage IB2/II cervical cancer. Gynecol Oncol 107:S122–124PubMedCrossRefGoogle Scholar
  20. 20.
    Niibe Y, Hayakawa K, Kanai T et al (2006) Optimal dose for stage IIIB adenocarcinoma of the uterine cervix on the basis of biological effective dose. Eur J Gynaecol Oncol 27:47–49PubMedGoogle Scholar
  21. 21.
    Pasler M, Wirtz H, Lutterbach J (2011) Impact of gantry rotation time on plan quality and dosimetric verification – volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT). Strahlenther Onkol 187:812–819PubMedCrossRefGoogle Scholar
  22. 22.
    Perez CA, Breaux S, Madoc-Jones H et al (1983) Radiation therapy alone in the treatment of carcinoma of uterine cervix. I. Analysis of tumor recurrence. Cancer 51:1393–1402PubMedCrossRefGoogle Scholar
  23. 23.
    Perez CA, Grigsby PW, Chao KS et al (1998) Tumor size, irradiation dose, and long-term outcome of carcinoma of uterine cervix. Int J Radiat Oncol Biol Phys 41:307–317PubMedCrossRefGoogle Scholar
  24. 24.
    Potter R, Dimopoulos J, Georg P et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83:148–155PubMedCrossRefGoogle Scholar
  25. 25.
    Small W, Jr, Mell LK, Anderson P et al (2008) Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys 71:428–434PubMedCrossRefGoogle Scholar
  26. 26.
    Vandecasteele K, De Neve W, De Gersem W et al (2009) Intensity-modulated arc therapy with simultaneous ntegrated boost in the treatment of primary irresectable cervical cancer. Strahlenther Onkol 185:799–807PubMedCrossRefGoogle Scholar
  27. 27.
    Yeoh EE, Fraser RJ, McGowan RE et al (2003) Evidence for efficacy without increased toxicity of hypofractionated radiotherapy for prostate carcinoma: early results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 55:943–955PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • K. Vandecasteele
    • 1
  • A. Makar
    • 2
  • R. Van den Broecke
    • 2
  • L. Delrue
    • 3
  • H. Denys
    • 4
  • K. Lambein
    • 5
  • B. Lambert
    • 6
  • M. van Eijkeren
    • 1
  • P. Tummers
    • 2
  • G. De Meerleer
    • 1
  1. 1.Department of RadiotherapyGhent University HospitalGhentBelgium
  2. 2.Department of GynaecologyGhent University HospitalGhentBelgium
  3. 3.Department of RadiologyGhent University HospitalGhentBelgium
  4. 4.Department of Medical OncologyGhent University HospitalGhentBelgium
  5. 5.Department of PathologyGhent University HospitalGhentBelgium
  6. 6.Department of Nuclear MedicineGhent University HospitalGhentBelgium

Personalised recommendations