Strahlentherapie und Onkologie

, Volume 188, Issue 7, pp 616–627 | Cite as

Acute versus chronic hypoxia in tumors

Controversial data concerning time frames and biological consequences
  • C. Bayer
  • P. Vaupel
Short communication



Many tumors contain hypoxic regions. Hypoxia, in turn, is known to increase aggressiveness and to be associated with treatment resistance. The two most frequently described and investigated subtypes of tumor hypoxia are acute and chronic. These two subtypes can lead to completely different hypoxia-related responses within the tumor, which could have a direct effect on tumor development and response to treatment. In order to accurately assess the specific biological consequences, it is important to understand which time frames best define acute and chronic hypoxia.

Materials and methods

This article provides an overview of the kinetics of in vitro and in vivo acute and chronic tumor hypoxia. Special attention was paid to differentiate between methods to detect spontaneous in vivo hypoxia and to describe the biological effects of experimental in vitro and in vivo acute and chronic tumor hypoxia.

Results and conclusions

There are large variations in reported spontaneous fluctuations in acute hypoxia that are dependent on the cell lines investigated and the detection method used. In addition to differing hypoxia levels, exposure times used to induce in vitro and in vivo experimental acute and chronic hypoxia range from 30 min to several weeks with no clear boundaries separating the two. Evaluation of the biological consequences of each hypoxia subtype revealed a general trend that acute hypoxia leads to a more aggressive phenotype. Importantly, more information on the occurrence of acute and chronic hypoxia in human tumors is needed to help our understanding of the clinical consequences.


Acute hypoxia Chronic hypoxia Hypoxia subtypes Tumor hypoxia 

Akute versus chronische Hypoxie in Tumoren

Kontroverse Daten über Zeitverläufe und biologische Konsequenzen



Viele Tumoren weisen Areale mit einer O2-Mangelversorgung (Hypoxie) auf, die zur Entwicklung eines aggressiven Phänotyps und zu Therapieresistenzen führen kann. Die hierbei am häufigsten experimentell untersuchten Subtypen sind die akute und chronische Hypoxie, die ganz unterschiedliche hypoxieinduzierte biologische Reaktionen der Tumoren zur Folge haben können. Um diese Effekte genauer erfassen zu können, ist insbesondere eine Festlegung der hierbei diskutierten zeitlichen Rahmen der beiden Hypoxieformen von Bedeutung.

Material und Methoden

Dieser Diskussionsbeitrag analysiert im Wesentlichen die zeitlichen Verläufe von in-vitro- und in-vivo-Untersuchungen zur akuten und chronischen Tumorhypoxie, wobei auch die jeweils eingesetzten Methoden zur Erfassung von Spontanhypoxien in vivo detailliert beschrieben werden. Weiterhin werden die biologischen Konsequenzen der akuten und chronischen Hypoxie in vivo und in vitro diskutiert.

Ergebnisse und Schlussfolgerungen

Die beobachteten Spontanfluktuationen bei der Akuthypoxie scheinen Zelllinien- und Methoden-abhängig zu sein. Weiterhin sind unterschiedliche Hypoxiegrade und Expositionszeiten zur Auslösung einer experimentellen Akut- und Langzeithypoxie in vitro und in vivo äußerst variabel, ohne bislang deutlich erkennbare „Zeitfenster“ zur Abgrenzung der beiden Hypoxieformen. Bei der Bewertung der biologischen Konsequenzen der beiden Hypoxiesubtypen wird deutlich, dass vor allem die Akuthypoxie zur Entwicklung eines aggressiven Phänotyps beiträgt. Für eine abschließende Bewertung der beiden Hypoxieformen in der klinischen Onkologie ist die gegenwärtige Datenlage jedoch noch nicht ausreichend.


Akute Hypoxie Chronische Hypoxie Hypoxiesubtypen Tumorhypoxie 



This study has been supported in part by the Bundesministerium für Bildung und Forschung (BMBF: 01EZ0826).

Conflict of interest

The corresponding author states that there are no conflicts of interest.


  1. 1.
    Aguilera A, Gomez-Gonzalez B (2008) Genomic instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9:204–217PubMedCrossRefGoogle Scholar
  2. 2.
    Alqawi O, Wand HP, Espiritu M, Singh G (2007) Chronic hypoxia promotes an aggressive phenotype in rat prostate cancer cells. Free Radic Res 41:788–797PubMedCrossRefGoogle Scholar
  3. 3.
    Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80:965–968PubMedCrossRefGoogle Scholar
  4. 4.
    Bayer C, Shi K, Maftei CA et al (2011) Assessment of chronic and acute hypoxia in head and neck cancer using microscopic and macroscopic imaging approaches. Strahlenther Onkol 187:602Google Scholar
  5. 5.
    Bindra RS, Crosby ME, Glazer PM (2007) Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26:249–260PubMedCrossRefGoogle Scholar
  6. 6.
    Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 64:6183–6189PubMedCrossRefGoogle Scholar
  7. 7.
    Braun RD, Lanzen JL, Dewhirst MW (1999) Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am J Physiol Heart Circ Physiol 277:H551–H568Google Scholar
  8. 8.
    Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192PubMedCrossRefGoogle Scholar
  9. 9.
    Brown JM (1979) Evidence of acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52:650–656PubMedCrossRefGoogle Scholar
  10. 10.
    Brurberg KG, Graff BA, Rofstad EK (2003) Temporal heterogeneity in oxygen tension in human melanoma xenografts. Br J Cancer 89:350–356PubMedCrossRefGoogle Scholar
  11. 11.
    Brurberg KG, Graff BA, Olsen DR, Rofstad EK (2004) Tumor-line specific pO2 fluctuations in human melanoma xenografts. Int J Radiat Biol Phys 58:403–409CrossRefGoogle Scholar
  12. 12.
    Cairns R, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908PubMedGoogle Scholar
  13. 13.
    Cairns R, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64:2054–2061PubMedCrossRefGoogle Scholar
  14. 14.
    Cárdenas-Navia LI, Mace D, Richardson RA et al (2008) The pervasive presence of fluctuating oxygenation in tumors. Cancer Res 68:5812–5819PubMedCrossRefGoogle Scholar
  15. 15.
    Chan N, Koritzinsky M, Zhao H et al (2008) Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res 68:605–614PubMedCrossRefGoogle Scholar
  16. 16.
    Chaplin DJ, Durand RE, Olive PL (1986) Acute hypoxia in tumors: Implications for modifiers of radiation effects. Int J Radiat Oncol Biol Phys 12:1279–1282PubMedCrossRefGoogle Scholar
  17. 17.
    Chaplin DJ, Olive PL, Durand RE (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47:597–601PubMedGoogle Scholar
  18. 18.
    Chaplin DJ, Hill SA (1995) Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumors. Br J Cancer 71:1210–1213PubMedCrossRefGoogle Scholar
  19. 19.
    Chaudary N, Hill RP (2007) Hypoxia and metastasis. Clin Cancer Res 13:1947–1949PubMedCrossRefGoogle Scholar
  20. 20.
    Dai Y, Bae K, Siemann DW (2011) Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys 81:521–528PubMedCrossRefGoogle Scholar
  21. 21.
    Dewhirst MW, Kimura H, Rehmus SW et al (1996) Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer Suppl 27:S247–S251PubMedGoogle Scholar
  22. 22.
    Dewhirst MW (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res 172:653–665PubMedCrossRefGoogle Scholar
  23. 23.
    Durand RE, LePard NE (1995) Contribution of transient blood flow to tumor hypoxia in mice. Acta Oncol 34:317–323PubMedCrossRefGoogle Scholar
  24. 24.
    Durand RE, Aquino-Parsons C (2001) Clinical relevance of intermittent tumour blood flow. Acta Oncol 40:929–936PubMedCrossRefGoogle Scholar
  25. 25.
    Endrich B, Intaglietta M, Reinhold HS, Gross JF (1979) Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res 39:17–23PubMedGoogle Scholar
  26. 26.
    Goethals L, Debucquoy A, Perneel C et al (2006) Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Biol Phys 65:246–254CrossRefGoogle Scholar
  27. 27.
    Gulliksrud K, Vestvik IK, Galappathi K et al (2008) Detection of different hypoxic cell subpopulations in human melanoma xenografts by pimonidazole immunohistochemistry. Radiat Res 170:638–650PubMedCrossRefGoogle Scholar
  28. 28.
    Hall EJ, Giacca AJ (2006) Oxygen effect and reoxygenation. In: Hall EJ, Giacca AJ (eds) Radiobiology for the Radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp. 85–105Google Scholar
  29. 29.
    Henze AT, Acker T (2010) Feedback regulators of hypoxia-inducible factors and their role in cancer biology. Cell Cycle 9:2749–2763PubMedCrossRefGoogle Scholar
  30. 30.
    Hill SA, Pigott KH, Saunders MI et al (1996) Microregional blood flow in murine and human tumours assessed using laser Doppler microprobes. Br J Cancer 74(Suppl XXVII):S260–S263Google Scholar
  31. 31.
    Höckel M, Knoop C, Schlenger K et al (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50PubMedCrossRefGoogle Scholar
  32. 32.
    Höckel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  33. 33.
    Höckel M, Schlenger K, Höckel S et al (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59:4525–4528PubMedGoogle Scholar
  34. 34.
    Höckel M, Vaupel P (2001) Tumor hypoxia: Definitions and current clinical, biological and molecular aspects. J Natl Cancer Inst 93:266–276PubMedCrossRefGoogle Scholar
  35. 35.
    Holmquist L, Jögi A, Pahlman S (2005) Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. Int J Cancer 116:218–225PubMedCrossRefGoogle Scholar
  36. 36.
    Homquist-Mengelbier L, Fredlund E, Löfstedt T et al (2006) Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell 10:413–423CrossRefGoogle Scholar
  37. 37.
    Hsieh CH, Lee CH, Liang JA et al (2010) Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. Oncol Rep 24:1629–1636PubMedCrossRefGoogle Scholar
  38. 38.
    Hsieh CH, Shyu WC, Chiang CY et al (2011) NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PloS One 6:e23945PubMedCrossRefGoogle Scholar
  39. 39.
    Hsieh CH, Chang HT, Shen WC et al (2011) Imaging the impact of Nox4 in cycling hypoxia-mediated U87 glioblastoma invasion and infiltration. Mol Imaging Biol, doi:10.1007/s11307-011-0516-0Google Scholar
  40. 40.
    Janssen HLK, Haustermans KMG, Sprong D et al (2002) HIF-1α, pimonidazole, and iododeoxyuridine to estimate hypoxia and perfusion in human head-and-neck tumors. Int J Radiat Oncol Biol Phys 54:1537–1549PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol Cell Physiol 271:C1172–C1180Google Scholar
  42. 42.
    Kalliomäki TM, McCallum G, Wells PG, Hill RP (2009) Progression and metastasis in a transgenic mouse breast cancer model: effects of exposure to in vivo hypoxia. Cancer Lett 282:98–108PubMedCrossRefGoogle Scholar
  43. 43.
    Kato Y, Yashiro M, Fuyuhiro Y et al (2011) Effects of acute and chronic hypoxia on the radiosensitivity of gastric and esophageal cancer cells. Anticancer Res 31:3369–3376PubMedGoogle Scholar
  44. 44.
    Kimura H, Braun RD, Ong ET et al (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56:5522–5528PubMedGoogle Scholar
  45. 45.
    Koh MY, Lemos R, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71:4015–4027PubMedCrossRefGoogle Scholar
  46. 46.
    Koritzinsky M, Magagnin MG, van der Beucken T et al (2006) Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 25:1114–1125PubMedCrossRefGoogle Scholar
  47. 47.
    Lanzen J, Brown RD, Klitzman B et al (2006) Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Res 66:2219–2223PubMedCrossRefGoogle Scholar
  48. 48.
    Lin Q, Cong X, Yun Z (2011) Differential hypoxic regulation of hypoxia-inducible factors 1α and 2α. Mol Cancer Res 9:757–765PubMedCrossRefGoogle Scholar
  49. 49.
    Louie E, Nik S, Chen JS et al (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12:R94PubMedCrossRefGoogle Scholar
  50. 50.
    Magat J, Jordan BF, Cron GO, Gallez B (2010) Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using 19F MRI. Med Phys 37:5434–5441PubMedCrossRefGoogle Scholar
  51. 51.
    Maftei CA, Bayer C, Shi K et al (2011) Quantitative assessment of hypoxia subtypes in microcirculatory supply units of malignant tumors using (immuno-)fluorescence techniques. Strahlenther Onkol 187:260–266PubMedCrossRefGoogle Scholar
  52. 52.
    Maftei CA, Bayer C, Astner ST et al (2011) Monitoring the fraction of total hypoxia and hypoxia subtypes in human squamous cell carcinomas during fractionated irradiation: evaluation using pattern recognition in microcirculatory supply units. Strahlenther Onkol 187(Suppl 1):25CrossRefGoogle Scholar
  53. 53.
    Maftei CA, Bayer C, Shi K et al (2011) Changes in the fraction of total hypoxia and hypoxia subtypes in human squamous cell carcinomas upon fractionated irradiation: evaluation using pattern recognition in microcirculatory supply units. Radiother Oncol 101:209–216PubMedCrossRefGoogle Scholar
  54. 54.
    Maftei CA, Shi K, Bayer C et al (2011) Comparison of (immuno-)fluorescence data with serial [18F]Fmiso PET/CT imaging for assessment of chronic and acute hypoxia in head and neck cancers. Radiother Oncol 99:412–417PubMedCrossRefGoogle Scholar
  55. 55.
    Martinive P, Defresne F, Bouzin C et al (2006) Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: Implications for anticancer therapies. Cancer Res 66:11736–11744PubMedCrossRefGoogle Scholar
  56. 56.
    Matsumoto S, Batra S, Saito K et al (2011) Anti-angiogenic agent sunitib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 71:6350–6359PubMedCrossRefGoogle Scholar
  57. 57.
    Minchinton AI, Durand RE, Chaplin DJ (1990) Intermittent blood flow in the KHT sarcoma-flow cytometry studies using Hoechst 33342. Br J Cancer 62:195–200PubMedCrossRefGoogle Scholar
  58. 58.
    Mottet D, Dumont V, Deccache Y et al (2003) Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/akt/glycogen synthase kinase 3β pathway in HepG2 cells. J Biol Chem 33:31277–31285CrossRefGoogle Scholar
  59. 59.
    Pettersen EO, Wang H (1996) Radiation-modifying effect of oxygen in synchronized cells pre-treated with acute or prolonged hypoxia. Int J Radiat Biol 70:319–326PubMedCrossRefGoogle Scholar
  60. 60.
    Pigott KH, Hill SA, Chaplin DJ, Saunders MI (1996) Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother Oncol 40:45–50PubMedCrossRefGoogle Scholar
  61. 61.
    Pires IM, Bencokova Z, Milani M et al (2010) Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 70:925–935PubMedCrossRefGoogle Scholar
  62. 62.
    Quero L, Dubois L, Lieuwes NG et al (2011) miR-210 as a marker of chronic hypoxia, but not a therapeutic target in prostate cancer. Radiother Oncol 101:203–208PubMedCrossRefGoogle Scholar
  63. 63.
    Ragan DMS, Schmidt EE, Macdonald IC et al (1988) Spontaneous cyclic contractions of the capillary wall in vivo, impeding red cell flow: a quantitative analysis. Evidence for endothelial cell contractility. Microvascular Res 36:13–30CrossRefGoogle Scholar
  64. 64.
    Reinhold HS, Blachiwiecz B, Blok A (1977) Oxygenation and reoxygenation in ‘sandwich’ tumours. Bibl Anat 15:270–272PubMedGoogle Scholar
  65. 65.
    Reinhold HS, Berg-Blok AE van den, Berg AP van den (1991) Variations in oxygenation of tumours as derived from NAD(H) measurements. Int J Radiat Biol 60:175–178PubMedCrossRefGoogle Scholar
  66. 66.
    Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757PubMedGoogle Scholar
  67. 67.
    Rofstad EK, Maseide K (1999) Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumors. Int J Radiat Biol 75:1377–1393PubMedCrossRefGoogle Scholar
  68. 68.
    Rofstad EK, Galappathi K, Mathiesen B et al (2007) Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 13:1971–1978PubMedCrossRefGoogle Scholar
  69. 69.
    Rofstad EK, Gaustad JV, Egeland TAM et al (2010) Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer 127:1535–1546PubMedCrossRefGoogle Scholar
  70. 70.
    Rouschop KM, Ramaekers CH, Schaaf MB et al (2009) Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol 92:411–416PubMedCrossRefGoogle Scholar
  71. 71.
    Ruggieri P (2004) Hypofractionation in non-small cell lung cancer (NSCLC): suggestions from modelling both acute and chronic hypoxia. Phys Med Biol 49:4811–4823PubMedCrossRefGoogle Scholar
  72. 72.
    Russel J, Carlin S, Burke SA et al (2009) Immunohistochemical detection of changes in tumor hypoxia. Int J Radiat Oncol Biol Phys 73:1177–1186CrossRefGoogle Scholar
  73. 73.
    Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCrossRefGoogle Scholar
  74. 74.
    Shrieve DC, Harris JW (1985) The in vitro sensitivity of chronically hypoxic EMT6/SF cells to X-radiation and hypoxic cell radiosensitizers. Int J Radiat Biol 48:127–138CrossRefGoogle Scholar
  75. 75.
    Silvia P, Homer JJ, Slevin NJ et al (2007) Clinical and biological factors affecting response to radiotherapy in patients with head and neck cancer: a review. Clin Otolaryngology 32:337–345CrossRefGoogle Scholar
  76. 76.
    Stewart GD, Nanda J, Katz E et al (2011) DNA strand breaks and hypoxia response inhibition mediate the radiosensitization effect of nitric oxide donors on prostate cancer under varying oxygen conditions. Biochem Pharmacol 81:203–210PubMedCrossRefGoogle Scholar
  77. 77.
    Sweet R, Paul A, Zastre J (2010) Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line. Cancer Biol Ther 10:1101–1111PubMedCrossRefGoogle Scholar
  78. 78.
    Terraneo L, Bianciardi P, Caretti A et al (2010) Chronic systemic hypoxia promotes LNCaP prostate cancer growth in vivo. Prostate 70:1243–1254PubMedCrossRefGoogle Scholar
  79. 79.
    Thews O, Wolloscheck T, Dillenburg W et al (2004) Microenvironmental adaptation of experimental tumours to chronic vs. acute hypoxia. Br J Cancer 91:1181–1189PubMedGoogle Scholar
  80. 80.
    Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549PubMedCrossRefGoogle Scholar
  81. 81.
    Trotter MJ, Chaplin DJ, Durand RE, Olive PL (1989) The use of fluorescent probes to identify regions of transient perfusion in murine tumors. Int J Radiat Oncol Biol Phys 16:931–934PubMedCrossRefGoogle Scholar
  82. 82.
    Trotter MJ, Chaplin DJ, Olive PL (1991) Possible mechanisms for intermittent blood flow in the murine SCCVII carcinoma. Int J Radiat Biol 60:139–146PubMedCrossRefGoogle Scholar
  83. 83.
    Tufto I, Rofstad EK (1995) Transient perfusion in human melanoma xenografts. Br J Cancer 71:789–793PubMedCrossRefGoogle Scholar
  84. 84.
    Van Malenstein H, Gevaert O, Libbrecht L et al (2010) A seven-gene set associated with chronic hypoxia of prognostic importance in hepatocellular carcinoma. Clin Cancer Res 16:4278–4288CrossRefGoogle Scholar
  85. 85.
    Vaupel P, Kluge M, Ambroz MC (1988) Laser Doppler flowmetry in subepidermal tumours and in normal skin of rats during localized ultrasound hyperthermia. Int J Hyperthermia 4:307–321PubMedCrossRefGoogle Scholar
  86. 86.
    Vaupel P, Kelleher DK, Höckel M (2001) Oxygenation status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28:29–35PubMedCrossRefGoogle Scholar
  87. 87.
    Vaupel P, Harrison PL (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5):4–9PubMedCrossRefGoogle Scholar
  88. 88.
    Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206PubMedCrossRefGoogle Scholar
  89. 89.
    Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354PubMedCrossRefGoogle Scholar
  90. 90.
    Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235PubMedCrossRefGoogle Scholar
  91. 91.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239PubMedCrossRefGoogle Scholar
  92. 92.
    Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–26PubMedCrossRefGoogle Scholar
  93. 93.
    Vaupel P (2009) Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin-Heidelberg, pp 51–92Google Scholar
  94. 94.
    Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin-Heidelberg, pp. 273–290Google Scholar
  95. 95.
    Vaupel P (2011) Acute and chronic hypoxia in the clinical setting: merely an academic discussion or do we need to distinguish between the two? Strahlenther Onkol 187:601Google Scholar
  96. 96.
    Vordermark D, Menke DR, Brown JM (2003) Similar radiation sensitivities of acutely and chronically hypoxic HT fibrosarcoma xenografts. Radiat Res 159:94–101PubMedCrossRefGoogle Scholar
  97. 97.
    Yasui H, Matsumoto S, Devasahayam N et al (2010) Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice. Cancer Res 70:6427–6436PubMedCrossRefGoogle Scholar
  98. 98.
    Yu L, Hales CA (2011) Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice. BMC Cancer 11:331PubMedCrossRefGoogle Scholar
  99. 99.
    Wang K, Yorke E, Nehmeh SA et al (2009) Modeling acute and chronic hypoxia using serial images of 18F-FMISO PET. Med Phys 36:4400–4408PubMedCrossRefGoogle Scholar
  100. 100.
    Zölzer F, Streffer C (2002) Increased radiosensitivity with chronic hypoxia in four human tumor cell lines. Int J Radiat Biol Phys 54:910–920CrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  1. 1.Department of Radiotherapy and Radiation OncologyKlinikum rechts der Isar, Technical University of MunichMunichGermany

Personalised recommendations