Strahlentherapie und Onkologie

, Volume 187, Issue 7, pp 433–441 | Cite as

Clinical Comparison of Dose Calculation Using the Enhanced Collapsed Cone Algorithm vs. a New Monte Carlo Algorithm

  • Irina Fotina
  • Gabriele Kragl
  • Bernhard Kroupa
  • Robert Trausmuth
  • Dietmar Georg
Original Article

Purpose:

Comparison of the dosimetric accuracy of the enhanced collapsed cone (eCC) algorithm with the commercially available Monte Carlo (MC) dose calculation for complex treatment techniques.

Material and Methods:

A total of 8 intensity-modulated radiotherapy (IMRT) and 2 stereotactic body radiotherapy (SBRT) lung cases were calculated with eCC and MC algorithms with the treatment planning systems (TPS) Oncentra MasterPlan 3.2 (Nucletron) and Monaco 2.01 (Elekta/CMS). Fluence optimization as well as sequencing of IMRT plans was primarily performed using Monaco. Dose prediction errors were calculated using MC as reference. The dose–volume histrogram (DVH) analysis was complemented with 2D and 3D gamma evaluation. Both algorithms were compared to measurements using the Delta4 system (Scandidos).

Results:

Recalculated with eCC IMRT plans resulted in lower planned target volume (PTV) coverage, as well as in lower organs-at-risk (OAR) doses up to 8%. Small deviations between MC and eCC in PTV dose (1–2%) were detected for IMRT cases, while larger deviations were observed for SBRT (up to 5%). Conformity indices of both calculations were similar; however, the homogeneity of the eCC calculated plans was slightly better. Delta4 measurements confirmed high dosimetric accuracy of both TPS.

Conclusion:

Mean dose prediction errors < 3% for PTV suggest that both algorithms enable highly accurate dose calculations under clinical conditions. However, users should be aware of slightly underestimated OAR doses using the eCC algorithm.

Key Words

Dose calculation Monte Carlo Collapsed cone algorithm IMRT 

Dosimetrischer Vergleich eines erweiterten Collapsed-Cone-Algorithmus mit einem neuen kommerziell verfügbaren Monte-Carlo-Algorithmus anhand klinisch relevanter Fälle

Ziel:

Vergleich der Dosisberechnungsgenauigkeit eines erweiterten Collapsed-Cone-(eCC-)Algorithmus mit einem kommerziell verfügbaren Monte-Carlo-(MC-)Algorithmus anhand von komplexen Bestrahlungstechniken.

Material und Methodik:

8 IMRT- und 2 SBRT-Pläne wurden jeweils mit dem eCC-Algorithmus des Bestrahlungsplanungssystems Oncentra 3.2 (Nucletron) und mit dem Monte-Carlo-Algorithmus von Monaco 2.01 (Elekta/CMS) berechnet. Die Fluenz-Optimierung und Sequenzierung der IMRT-Pläne wurden mittels Monaco durchgeführt. Zusätzlich zur DVH-Analyse wurden eine 2D und 3D Gamma-Index-Evaluierung durchgeführt. Darüber hinaus erfolgte eine dosimetrische Überprüfung der Bestrahlungspläne mit dem Delta4-System (Scandidos).

Ergebnisse:

Im Vergleich zum MC-Algorithmus resultierte die Nachberechnung der IMRT-Pläne mit dem eCC in einer geringeren Abdeckung der Zielvolumina sowie in einer um bis zu 8% niedrigeren Dosis für Risikoorgane (OAR). Bei den IMRT-Fällen waren die Abweichungen zwischen den PTV-Dosen der beiden Algorithmen gering (1–2%), wohingegen die größten Abweichungen (bis zu 5%) für SBRT festgestellt wurden. Die ermittelten Konformitätsindizes waren für beide Algorithmen sehr ähnlich; die Homogenität war für eCC-Pläne geringfügig besser. Die Delta4-Messungen bestätigten die hohe Dosisberechnungsgenauigkeit beider Algorithmen.

Schlussfolgerung:

Die mittlere Unsicherheit der berechneten PTV-Dosen betrug weniger als 3%, d.h. mit beiden Algorithmen kann eine zuverlässige Dosisvorhersage unter klinischen Bedingungen erzielt werden. Bei der Beurteilung von mit eCC berechneten Plänen sollte die geringfügige Unterschätzung der Dosis in OAR berücksichtigt werden.

Schlüsselwörter

Dosisberechnung Monte Carlo Collapsed-Cone-Algorithmus IMRT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birner P, Schindl M, Obermair A et al. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 2000;60:4693–4696.PubMedGoogle Scholar
  2. 2.
    Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 2000;6:157–162.PubMedCrossRefGoogle Scholar
  3. 3.
    Chilov D, Camenisch G, Kvietikova I et al. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J Cell Sci 1999;112:1203–1212.PubMedGoogle Scholar
  4. 4.
    Choi H, Chun YS, Kim SW et al. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol 2006;70:1664–1671.PubMedCrossRefGoogle Scholar
  5. 5.
    Duvoix A, Blasius R, Delhalle S et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett 2005;223:181–190.PubMedCrossRefGoogle Scholar
  6. 6.
    Gao C, Ding Z, Liang B et al. [Study on the effects of curcumin on angiogenesis]. Zhong Yao Cai 2003;26:499–502.PubMedGoogle Scholar
  7. 7.
    Javvadi P, Segan AT, Tuttle SW et al. The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 2008;73:1491–1501.PubMedCrossRefGoogle Scholar
  8. 8.
    Jiao Y, Wilkinson J, Di X et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 2009;113:462–469.PubMedCrossRefGoogle Scholar
  9. 9.
    Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 2009;14:141–153.PubMedGoogle Scholar
  10. 10.
    Kawamori T, Lubet R, Steele VE et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 1999;59:597–601.PubMedGoogle Scholar
  11. 11.
    Kotas M, Schmitt P, Jakob PM et al. Monitoring of tumor oxygenation changes in head-and-neck carcinoma patients breathing a hyperoxic hypercapnic gas mixture with a noninvasive MRI technique. Strahlenther Onkol 2009;185:19–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Leu TH, Maa MC. The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem Anticancer Agents 2002;2:357–370.PubMedCrossRefGoogle Scholar
  13. 13.
    Overgaard J, Eriksen JG, Nordsmark M et al. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 2005;6:757–764.PubMedCrossRefGoogle Scholar
  14. 14.
    Patties I, Jahns J, Hildebrandt G et al. Additive effects of 5-aza-2′-deoxycytidine and irradiation on clonogenic survival of human medulloblastoma cell lines. Strahlenther Onkol 2009;185:331–338.PubMedCrossRefGoogle Scholar
  15. 15.
    Rades D, Setter C, Dunst J et al. Prognostic impact of VEGF and VEGF receptor 1 (FLT1) expression in patients irradiated for stage II/III non-small cell lung cancer (NSCLC). Strahlenther Onkol 2010;186:307–314.PubMedCrossRefGoogle Scholar
  16. 16.
    Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006;72:1439–1452.PubMedCrossRefGoogle Scholar
  17. 17.
    Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti-in-flammatory activities of curcumins I–III from Curcuma longa. Phytomedicine 2000;7:303–308.PubMedGoogle Scholar
  18. 18.
    Ranjan D, Chen C, Johnston TD et al. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res 2004;121:171–177.PubMedCrossRefGoogle Scholar
  19. 19.
    Reyes-Gordillo K, Segovia J, Shibayama M et al. Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta 2007;1770:989–996.PubMedGoogle Scholar
  20. 20.
    Sandur SK, Deorukhkar A, Pandey MK et al. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. Int J Radiat Oncol Biol Phys 2009;75:534–542.PubMedCrossRefGoogle Scholar
  21. 21.
    Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 2009;24:97–106.Google Scholar
  22. 22.
    Souchon R, Wenz F, Sedlmayer F et al. DEGRO practice guidelines for palliative radiotherapy of metastatic breast cancer: bone metastases and metastatic spinal cord compression (MSCC). Strahlenther Onkol 2009;185:417–424.PubMedCrossRefGoogle Scholar
  23. 23.
    Stiehl DP, Jelkmann W, Wenger RH et al. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 2002;512:157–162.PubMedCrossRefGoogle Scholar
  24. 24.
    Syng-Ai C, Kumari AL, Khar A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 2004;3:1101–1108.PubMedGoogle Scholar

Copyright information

© Urban & Vogel 2011

Authors and Affiliations

  • Irina Fotina
    • 1
    • 2
  • Gabriele Kragl
    • 1
  • Bernhard Kroupa
    • 1
  • Robert Trausmuth
    • 1
  • Dietmar Georg
    • 1
  1. 1.Division of Medical Radiation Physics, Department of RadiotherapyMedical University Vienna/AKH WienViennaAustria
  2. 2.Division Medical Radiation Physics, Department of RadiotherapyMedical University Vienna / AKH ViennaViennaAustria

Personalised recommendations