Strahlentherapie und Onkologie

, Volume 187, Issue 7, pp 426–432 | Cite as

Respiratory-Induced Prostate Motion

Characterization and Quantification in Dynamic MRI
  • Julien DinkelEmail author
  • Christian Thieke
  • Christian Plathow
  • Patrick Zamecnik
  • Hermann Prüm
  • Peter E. Huber
  • Hans-Ulrich Kauczor
  • Heinz-Peter Schlemmer
  • Christian M. Zechmann
Original Article

Background and Purpose:

To investigate prostate movement during deep breathing and contraction of abdominal musculature by means of dynamic MRI and analyze implications for image-guided radiotherapy of prostate cancer.

Patients and Methods:

A total of 43 patients and 8 healthy volunteers were examined with MRI. Images during deep respiration and during contraction of abdominal musculature (via a coughing maneuver) were obtained with dynamic two-dimensional (2D) balanced SSFP; 3 frames/s were obtained over an acquisition time of 15 s. Images were acquired in sagittal orientation to evaluate motion along both the craniocaudal (cc)-axis and anteroposterior (ap)-axis. Prostate motion was quantified semi-automatically using dedicated software tools.


Respiratory induced mean cc-axis displacement of the prostate was 2.7 ± 1.9 (SD) mm (range, 0.5–10.6 mm) and mean ap-axis displacement 1.8 ± 1.0 (SD) mm (range, 0.3–10 mm). In 69% of the subjects, breathing-related prostate movements were found to be negligible (< 3 mm). The prostate displacement for abdominal contraction was significantly higher: mean cc-axis displacement was max. 8.4 ± 6.7 (SD) mm (range, 0.6–27 mm); mean anteroposterior movement was 8.3 ± 7.7 (SD) mm (range, 0.7–26 mm).


Dynamic MRI is an excellent tool for noninvasive real-time imaging of prostate movement. Further investigations regarding possible applications in image-guided radiotherapy, e.g., for individualized planning and in integrated linac/MRI systems, are warranted.

Key Words

Dynamic MRI Organ motion Prostate 

Ateminduzierte Bewegung der Prostata: Charakterisierung und Quantifizierung mittels dynamischer MRT


Ziel dieser Studie war die nicht-invasive Analyse der ateminduzierten Prostatabewegung mittels dynamischer MRT-Bildgebung im Hinblick auf die Auswirkungen für die bildgestützte Radiotherapie beim Prostatakarzinom.


43 Patienten und 8 Probanden wurden mittels MRT untersucht. Aufnahmen unter Echtzeit-Bedingungen während der Atmung und während der Kontraktion der abdominalen Muskulatur (Hustenversuch) erfolgten mit einer 2D-cine-balanced-SSFP-Sequenz. 3 Bilder/s wurden während 15 s Aufnahmezeit produziert. Die Bewegung der Prostata in der kraniokaudalen und anteroposterioren Richtung wurde in einer sagittalen Orientierung erfasst. Die atemabhängige und muskelkontraktionsabhängige Prostatabewegung wurde semiautomatisch mit dedizierter Software analysiert.


Die Prostata bewegte sich synchron mit der Zwerchfellbewegung. Die kraniokaudale atembedingte Prostatabewegung betrug 2,7 ± 1,9 (SD) mm (Range 0,5–10,6 mm), während die anteroposteriore Bewegung bei 1,8 ± 1 (SD) mm (Range 0,3–10 mm) lag. 69 % der Prostatabewegungen waren kleiner als 3 mm. Bei maximaler abdominaler Muskelkontraktion bewegte sich die Prostata signifikant mehr als allein aufgrund der Atmung. Die Muskelkontraktion verursachte eine kraniokaudale Prostatabewegung von max. 8,4 ± 6,7 (SD) mm (Range 0,6–27 mm). Die AP-Bewegung betrug 8,3 ± 7,7 (SD) mm (Range 0,7–26 mm).


Die dynamische MRT ermöglicht die nichtinvasive Analyse der Prostatabewegung. Weitere Studien bezüglich möglicher Anwendungen in der bildgestützten Radiotherapie, z. B. zur individuellen Planung und Integration in MRT-/Linac-Systeme, sind erforderlich.


Dynamische MRT Organbewegung Prostata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews DW, Scott CB, Sperduto PW et al. Whole brain radiotherapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004;363:1665–1672.PubMedCrossRefGoogle Scholar
  2. 2.
    Aoyama H, Tago M, Kato N et al. Neurocognitive function of patients with brain metastases who received either WBRT plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 2007;68:1388–1395.PubMedCrossRefGoogle Scholar
  3. 3.
    Auchter RM, Lamond JP, Alexander E et al. A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastases. Int J Radiat Oncol Biol Phys 1996;35:27–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Barnholtz-Sloan JS, Sloan AE, Davis FG et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004;22:2865–2872.PubMedCrossRefGoogle Scholar
  5. 5.
    Becker G, Major J, Christ G et al. Stereotaxic convergent-beam irradiation. Initial experience with SRS 200 system. Strahlenther Onkol 1996;172:9–18.PubMedGoogle Scholar
  6. 6.
    Chougule PB, Burton-Williams M, Saris S et al. Randomized treatment of brain metastases with gamma knife radiosurgery, whole brain radiotherapy or both. Int J Radiat Oncol Biol Phys 2000;48:114a.Google Scholar
  7. 7.
    Chuntia D, Brown P, Li J et al. Whole brain radiotherapy in the management of brain metastasis. J Clin Oncol 2006;24:1295–1304.CrossRefGoogle Scholar
  8. 8.
    El Majdoub F, Brunn A et al. Stereotactic interstitial radiosurgery for intracranial Rosai-Dorfman disease. A novel therapeutic approach. Strahlenther Onkol 2009;185:109–112.CrossRefGoogle Scholar
  9. 9.
    Fokas E, Henzel M, Hamm K et al. Radiotherapy for brain metastases from renal cell cancer: should whole-brain radiotherapy be added to stereotactic radiosurgery? Analysis of 88 patients. Strahlenther Onkol 2010;186:210–217.PubMedCrossRefGoogle Scholar
  10. 10.
    Gaspar LE, Scott C, Rotman M et al. Recursive portioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 1997;37:745–751.PubMedCrossRefGoogle Scholar
  11. 11.
    Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neurooncol 2005;75:5–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaplan EL, Meier P. Non parametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–481.CrossRefGoogle Scholar
  13. 13.
    Kaulich TW, Bamberg M. Radiation protection of persons living close to patients with radioactive implants. Strahlenther Onkol 2010;186:107–112.PubMedCrossRefGoogle Scholar
  14. 14.
    Kiricuta IC, Bohndorf W. Adjuvant whole brain irradiation in small-cell bronchial carcinoma. Strahlenther Onkol 1996;172:553–558.PubMedGoogle Scholar
  15. 15.
    Kondziolka D, Patel A, Lunfsford LD et al. Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 1999;45:427–434.PubMedGoogle Scholar
  16. 16.
    Maarouf M, El Majdoub F, Buhrle C et al. Pineal parenchymal tumors: management with interstitial iodine-125 radiosurgery. Strahlenther Onkol 2010;186:496–501.CrossRefGoogle Scholar
  17. 17.
    Mints AH, Kestle J, Rathbone MP et al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastases. Cancer 1996;78:1470–1476.CrossRefGoogle Scholar
  18. 18.
    NCCN Practice Guidelines in Oncology-v.1. 2010 (
  19. 19.
    Nieder C, Niewald M, Schnabel K. The results of the radiotherapy of brain metastases in patients at an advanced age. Strahlenther Onkol 1995;171:646–648.PubMedGoogle Scholar
  20. 20.
    O’Neill BP, Itrurria NJ, Link MJ et al. A comparison of surgical resection and stereotactic radiosurgery in the treatment of solitary brain metastases. Int J Radiat Oncol Biol Phys 2003;55:1169–1176.PubMedCrossRefGoogle Scholar
  21. 21.
    Patchell RA. Brain metastases. Neurol Clin 1991;9:817–824.PubMedGoogle Scholar
  22. 22.
    Patchell RA, Tibbs PA, Regine WF et al. Postoperative radiotherapy in the treatment of single metastases to the brain. A randomized trial. JAMA 1998;280:1485–1489.PubMedCrossRefGoogle Scholar
  23. 23.
    Patchell RA, Tibbs PA, Walsh JW et al. A randomized trial of surgery in the treatment of single metastases of the brain. N Engl J Med 1990;322:494–500.PubMedCrossRefGoogle Scholar
  24. 24.
    Rades D, Nadrowitz R, Buchmann I et al. Radiolabeled ceuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC). Strahlenther Onkol 2010;186:458–462.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruge MI, Kochem M, Maarouf M, Hamisch C, Trever H, Voges J, Sturm V. Comparison of stereotactic brachytherapy (125iodine seeds) with stereotactic radiosurgery (LINAC) for the treatment of singular cerebral metastases. Strahlenther Onkol 2011;187:7–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Schoggl A, Kitz K, Reddy M et al. Defining the role of stereotactic radiosurgery versus microsurgery in the treatment of single brain metastases. Acta Neurochir 2000;142:621–626.CrossRefGoogle Scholar
  27. 27.
    Schouten LJ, Rutten J, Huveneers HA et al. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002;94:2698–2705.PubMedCrossRefGoogle Scholar
  28. 28.
    Shiau CY, Sneed PK, Shu HK et al. Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 1997;37:375–383.PubMedCrossRefGoogle Scholar
  29. 29.
    Sundstrom JT, Minn H, Lertola KK et al. Prognosis of patient treated for intracranial metastases with whole brain irradiation. Ann Med 1998;30:296–299.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsao MN, Lloyd NS, Wong RKS, et al. Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer treatment review 2005;31:256–273.CrossRefGoogle Scholar
  31. 31.
    Vecht CJ, Haaxma-Reiche H, Noordijk EM et al. Treatment of single brain metastases: radiotherapy alone or combined with neurosurgery. Ann Neurol 1993;33:583–590.PubMedCrossRefGoogle Scholar
  32. 32.
    Zimm S, Wampler GL, Stablein D et al. Intracerebral metastases in solid tumor patients: natural history and results of treatment. Cancer 1981;48:384–394.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2011

Authors and Affiliations

  • Julien Dinkel
    • 1
    • 8
    Email author
  • Christian Thieke
    • 2
    • 3
  • Christian Plathow
    • 1
    • 4
  • Patrick Zamecnik
    • 1
  • Hermann Prüm
    • 5
  • Peter E. Huber
    • 2
  • Hans-Ulrich Kauczor
    • 1
    • 6
  • Heinz-Peter Schlemmer
    • 1
  • Christian M. Zechmann
    • 1
    • 7
  1. 1.Department of RadiologyGerman Cancer Research CenterHeidelbergGermany
  2. 2.Clinical Cooperation Unit Radiation OncologyGerman Cancer Research CenterHeidelbergGermany
  3. 3.Department of Radiation OncologyUniversity Clinic HeidelbergHeidelbergGermany
  4. 4.Radiology Baden-BadenBaden-BadenGermany
  5. 5.Software Development for Integrated Diagnostics and Therapy GroupGerman Cancer Research CenterHeidelbergGermany
  6. 6.Department of RadiologyUniversity Clinic HeidelbergHeidelbergGermany
  7. 7.Department of Nuclear medicineUniversity Clinic HeidelbergHeidelbergGermany
  8. 8.Department of RadiologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations