Strahlentherapie und Onkologie

, Volume 188, Issue 4, pp 334–339

Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas

Results of a prospective phase II study
  • M.D. Piroth
  • M. Pinkawa
  • R. Holy
  • J. Klotz
  • S. Schaar
  • G. Stoffels
  • N. Galldiks
  • H.H. Coenen
  • H.J. Kaiser
  • K.J. Langen
  • M.J. Eble
Original article

Abstract

Purpose

Dose escalations above 60 Gy based on MRI have not led to prognostic benefits in glioblastoma patients yet. With positron emission tomography (PET) using [18F]fluorethyl-L-tyrosine (FET), tumor coverage can be optimized with the option of regional dose escalation in the area of viable tumor tissue.

Methods and materials

In a prospective phase II study (January 2008 to December 2009), 22 patients (median age 55 years) received radiochemotherapy after surgery. The radiotherapy was performed as an MRI and FET-PET-based integrated-boost intensity-modulated radiotherapy (IMRT). The prescribed dose was 72 and 60 Gy (single dose 2.4 and 2.0 Gy, respectively) for the FET-PET- and MR-based PTV-FET(72 Gy) and PTV-MR(60 Gy). FET-PET and MRI were performed routinely for follow-up. Quality of life and cognitive aspects were recorded by the EORTC-QLQ-C30/QLQ Brain20 and Mini-Mental Status Examination (MMSE), while the therapy-related toxicity was recorded using the CTC3.0 and RTOG scores.

Results

Median overall survival (OS) and disease-free survival (DFS) were 14.8 and 7.8 months, respectively. All local relapses were detected at least partly within the 95% dose volume of PTV-MR(60 Gy). No relevant radiotherapy-related side effects were observed (excepted alopecia). In 2 patients, a pseudoprogression was observed in the MRI. Tumor progression could be excluded by FET-PET and was confirmed in further MRI and FET-PET imaging. No significant changes were observed in MMSE scores and in the EORTC QLQ-C30/QLQ-Brain20 questionnaires.

Conclusion

Our dose escalation concept with a total dose of 72 Gy, based on FET-PET, did not lead to a survival benefit. Acute and late toxicity were not increased, compared with historical controls and published dose–escalation studies.

Keywords

Dose escalation Glioblastoma Radiotherapy Dose fractionation 

Integrated-Boost-IMRT mit FET-PET-adaptierter lokaler Dosiseskalation beim Glioblastom

Ergebnisse einer prospektiven Phase-II-Studie

Zusammenfassung

Ziel

Steigerungen der Strahlendosis über 60 Gy, basierend auf der MRT, führten bisher nicht zu einer Prognoseverbesserung bei Glioblastomen. Die [18F]Fluorethyl-L-Tyrosin (FET)-PET erlaubt eine optimierte Erfassung der Tumorausdehnung, womit die Option einer fokussierten Dosiserhöhung im Bereich viabler Tumorareale verbunden ist.

Material und Methoden

In einer prospektiven Phase-II-Studie (2008–2009) erhielten 22 Glioblastom-Patienten eine Strahlenchemotherapie nach erfolgter Resektion. Die Bestrahlung erfolgte als Integrated-Boost-IMRT (IB-IMRT), basierend auf MRT- und postoperativer FET-PET-Bildgebung. Die Dosisverschreibung betrug 72 bzw. 60 Gy (ED 2,4 bzw. 2,0 Gy) für das FET-PET- bzw. MRT-basierte PTV-FET(72 Gy) bzw. PTV-MRT(60 Gy). Das Follow-Up basierte auf regelmäßigen FET-PET- sowie MRT-Untersuchungen. Lebensqualität und kognitive Aspekte wurden mittels EORTC-QLQ-C30 und QLQ-Brain20 sowie „Mini Mental Status“-Test (MMST) erfasst. Die Toxizitätserfassung erfolgte mittels CTC3.0- bzw. RTOG-Score.

Ergebnisse

Gesamt- und rezidivfreies Überleben lagen bei 14,8 und 7,8 Monaten. Alle lokalen Rezidive lagen zumindest partiell innerhalb der 95%-Isodose des PTV-MRT(60 Gy). Höhergradige strahlentherapiespezifische Nebenwirkungen traten nicht auf. Bei 2 Patienten zeigte sich eine Pseudoprogression im MRT. Ein Tumorprogress wurde mittels FET-PET ausgeschlossen und durch weitere Bildgebung bestätigt.

Hinsichtlich der Lebensqualität und Kognition zeigten sich im zeitlichen Verlauf keine signifikanten Veränderungen.

Schlussfolgerung

Unser Dosiseskalationskonzept mit bis zu 72 Gy, basierend auf der FET-PET, führte nicht zu einer Überlebensverbesserung. Eine Erhöhung der Toxizität oder eine signifikante Verschlechterung der Lebensqualität zeigte sich im Vergleich zur historischen Kontrolle nicht.

Schlüsselwörter

Dosiseskalation Strahlentherapie Dosisfraktionierung Glioblastom 

References

  1. 1.
    Balducci M, Apicella G, Manfrida S et al (2010) Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high-grade gliomas: final report. Strahlenther Onkol 186:558–564PubMedCrossRefGoogle Scholar
  2. 2.
    Baumert BG, Lutterbach J, Bernays R et al (2003) Fractionated stereotactic radiotherapy boost after post-operative radiotherapy in patients with high-grade gliomas. Radiother Oncol 67:183–190PubMedCrossRefGoogle Scholar
  3. 3.
    Blonigen BJ, Steinmetz RD, Levin L et al (2010) Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77:996–1001PubMedCrossRefGoogle Scholar
  4. 4.
    Cardinale R, Won M, Choucair A et al (2006) A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023. Int J Radiat Oncol Biol Phys 65:1422–1428PubMedCrossRefGoogle Scholar
  5. 5.
    Chan JL, Lee SW, Fraass BA et al (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642PubMedCrossRefGoogle Scholar
  6. 6.
    Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694PubMedCrossRefGoogle Scholar
  7. 7.
    Gerstein J, Franz K, Steinbach JP et al (2011) Radiochemotherapy with temozolomide for patients with glioblastoma: prognostic factors and long-term outcome of unselected patients from a single institution. Strahlenther Onkol 187:722–728PubMedCrossRefGoogle Scholar
  8. 8.
    Grosu AL, Weber WA, Franz M et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519PubMedCrossRefGoogle Scholar
  9. 9.
    Guckenberger M, Mayer M, Buttmann M et al (2011) Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme. Strahlenther Onkol 187:548–554PubMedCrossRefGoogle Scholar
  10. 10.
    Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2–18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856PubMedCrossRefGoogle Scholar
  11. 11.
    Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294PubMedCrossRefGoogle Scholar
  12. 12.
    Lee SW, Fraass BA, Marsh LH et al (1999) Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys 43:79–88PubMedCrossRefGoogle Scholar
  13. 13.
    Macdonald DR, Cascino TL, Schold SC Jr et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  14. 14.
    Milano MT, Okunieff P, Donatello RS et al (2010) Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys 78:1147–1155PubMedCrossRefGoogle Scholar
  15. 15.
    Oppitz U, Maessen D, Zunterer H et al (1999) 3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol 53:53–57PubMedCrossRefGoogle Scholar
  16. 16.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687PubMedCrossRefGoogle Scholar
  17. 17.
    Piroth MD, Pinkawa M, Holy R et al (2009) Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme – a dosimetric comparison. Radiat Oncol 4:57PubMedCrossRefGoogle Scholar
  18. 18.
    Piroth MD, Pinkawa M, Holy R et al (2011) Prognostic value of early 18F-fluoroethylthyrosine PET after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 80:176–184PubMedCrossRefGoogle Scholar
  19. 19.
    Piroth MD, Holy R, Pinkawa M et al (2011) Prognostic impact of postoperative, pre-irradiation 18F-fluoroethyl-L-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol 99:218–224PubMedCrossRefGoogle Scholar
  20. 20.
    Rickhey M, Koelbl O, Eilles C et al (2008) A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors. Strahlenther Onkol 184:536–542PubMedCrossRefGoogle Scholar
  21. 21.
    Rickhey M, Moravek Z, Eilles C et al (2010) 18F-FET-PET-based dose painting by numbers with protons. Strahlenther Onkol 186:320–326PubMedCrossRefGoogle Scholar
  22. 22.
    Roesch P, Netsch T, McNutt T et al (2003) Syntegra – automated image registration algorithms. Philips White PaperGoogle Scholar
  23. 23.
    Shrieve DC, Alexander E III, Black PM et al (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77PubMedCrossRefGoogle Scholar
  24. 24.
    Souhami L, Seiferheld W, Brachman D et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 60:853–860PubMedCrossRefGoogle Scholar
  25. 25.
    Stupp R, Mason WP, Bent MJ van den et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  26. 26.
    Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  27. 27.
    Tsien C, Moughan J, Michalski JM et al (2009) Phase I three-dimensional conformal radiation dose escalation study in newly diagnosed glioblastoma: radiation therapy oncology group trial 98-03. Int J Radiat Oncol Biol Phys 73:699–708PubMedCrossRefGoogle Scholar
  28. 28.
    Walker MD, Strike TA, Sheline GE (1979) Analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731PubMedGoogle Scholar
  29. 29.
    Walker MD, Alexander E Jr, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343PubMedCrossRefGoogle Scholar
  30. 30.
    Weber DC, Casanova N, Zilli T et al (2009) Recurrence pattern after [(18)F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study. Radiother Oncol 93:586–592PubMedCrossRefGoogle Scholar
  31. 31.
    Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRefGoogle Scholar
  32. 32.
    Wick A, Felsberg J, Steinbach JP et al (2007) Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J Clin Oncol 25:3357–3361PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2012

Authors and Affiliations

  • M.D. Piroth
    • 1
    • 5
  • M. Pinkawa
    • 1
    • 5
  • R. Holy
    • 1
    • 5
  • J. Klotz
    • 1
    • 5
  • S. Schaar
    • 1
    • 5
  • G. Stoffels
    • 2
    • 5
  • N. Galldiks
    • 2
    • 4
  • H.H. Coenen
    • 2
    • 5
  • H.J. Kaiser
    • 3
  • K.J. Langen
    • 2
    • 5
  • M.J. Eble
    • 1
    • 5
  1. 1.Department of Radiation OncologyRWTH Aachen University HospitalAachenGermany
  2. 2.Institute of Neuroscience and MedicineForschungszentrum JülichJülichGermany
  3. 3.Department of Nuclear MedicineRWTH Aachen University HospitalAachenGermany
  4. 4.Department of NeurologyUniversity Hospital CologneCologneGermany
  5. 5.Jülich-Aachen Research Alliance (JARA) – Section JARA-BrainForschungszentrum JülichJülichGermany

Personalised recommendations